摘要
文中应用K-泛函理论,建立了Meyer-Konig 和Zeller 型算子在C[0,1]空间中的逼近等价定理。
and it is called Meyer- K(o|¨)nig and Zeller type operators. In this paper. The equivalent approximation theorem for operator (M|-) n are obtained: Theorem6. Let l∈C[(0,l] and 0<a≤2. Then the following are equivalent;a1) For n≥2 and x∈[0,1] satisfies [(M|-) n(∫,x) -∫(x)] ≤A[(?)(x)/n + 2](2|x)2) ∫∈ Lip a. where A>0 is constant and (?)(x) = x(1-x)2
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
1990年第4期361-366,共6页
Journal of Xiamen University:Natural Science
基金
福建省自然科学基金
关键词
算子
逼近等价定理
K-泛函
Meyer -K(o|¨)nig and Zeller type operators, K-functional , Modulas of smoothness. Equivalent approximation theorem.