期刊文献+

基于双密度双树复小波变换多字典的人脸特征稀疏分类方法

Sparse representation of face feature recognition based on multiple dictionaries of double-density dual-tree complex wavelet transform
下载PDF
导出
摘要 基于超完备字典的人脸稀疏表示方法的难点是其字典构成。针对此问题,首先采用双密度双树复小波变换(DD-DT CWT)提取人脸图像不同尺度的高频子带,然后根据能量平均分布最大原则选择能量较大的部分子带构成对应尺度的超完备字典。同时,将测试样本相应的人脸DD-DT CWT子带特征看成超完备字典中原子的线性组合,并组合多字典上的稀疏表示进行识别。在AR人脸图像库上进行了实验,结果表明该方法是一种有效的人脸特征表示及分类方法。 The difficulty in sparse representation of facial images based on over-complete dictionary is the dictionary generation.This paper first introduced the Double-Density Dual-Tree Complex Wavelet Transform(DD-DT CWT) for filtering the high-frequency sub-bands and the principle of energy distribution for selecting some sub-bands as the feature of a facial image to form multi-scale dictionaries,then viewed the similar feature of a test sample as the linear combination of some atoms in the overcomplete dictionary,finally got the recognition results via ensembling sparse representations on these dictionaries.The experimental results on AR face database demonstrate the efficiency of the proposed algorithm.
出处 《计算机应用》 CSCD 北大核心 2011年第8期2115-2118,共4页 journal of Computer Applications
基金 重庆市科技攻关重点项目(CSTC 2009AB0175) 中央高校基本科研业务费专项(CDJXS10122218 CDJXS10120019) 重庆市科委自然科学基金资助项目(CSTC 2010BB2230)
关键词 超完备字典 稀疏表示 双密度双树复小波变换 特征提取 多尺度 overcomplete dictionary sparse representation Double-Density Dual-Tree Complex Wavelet Transform(DD-DT CWT) feature extraction multi-scale
  • 相关文献

参考文献13

  • 1辜小花,龚卫国,杨利平,李伟红.核保局鉴别分析人脸识别算法[J].仪器仪表学报,2010,31(9):2016-2021. 被引量:9
  • 2李伟红,陈伟民,龚卫国.一种人脸特征选择新方法的研究[J].电子测量与仪器学报,2006,20(2):16-20. 被引量:9
  • 3龚卫国.《人脸识别技术》专题文章导读[J].光学精密工程,2008,16(8):1452-1452. 被引量:4
  • 4CAI D, HE X F, HU Y X, et al. Learning a spatially smooth sub- space for face recognition [ C]//2007 IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2007:1-7.
  • 5OJALA T, PIETIKAINEN M, HARWOOD D. A comparative study of texture measures with classification based on feature distributions [ J]. Pattern Recognition, 1996, 29(1) : 51 - 59.
  • 6OLSHAUSEN B A, FIELD D J. Sparse coding with an overcomplete basis set: A strategy employed by V1 ? [ J]. Vision Research, 1997, 37(23) : 3311 -3325.
  • 7CANDES E J. Ridgelets: Theory and applications [ D]. Stanford, CA: Stanford University, 1998.
  • 8CANDES E J, DONOHO D L. Curvelets: A surprisingly effective nonadaptive representation for objects with edges [ R]. Stanford, CA: Stanford University, 1999.
  • 9DO M N, VETrERLI M. The contonrlet transform: An efficient di- rectional muhiresolution image representation [ J]. IEEE Transac- tions on Image Processing, 2005, 14( 12): 2091 -2106.
  • 10WRIGHT J, YANG Y, GANESH A, et al. Robust face recognition via sparse representation [ J]. Pattern Analysis and Machine Intelli- gence, 2009, 31(2): 210-227.

二级参考文献26

  • 1李伟红,刘丽娟,龚卫国,辜小花.人脸识别中基于均匀设计的SVM超参数调节方法[J].光电子.激光,2009,20(10):1342-1347. 被引量:3
  • 2YANG J, FRANGI A F, YANG J, et al. KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition [J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2005, 27:230-244.
  • 3LI J, PAN J, CHU S. Kernel class-wise locality preserving projection [J].Information Sciences, 2008, 178:1825-1835.
  • 4SAMARIA F, HARTER A. Parameterization of a stochastic model for human face identification[C].Proc. Second IEEE Worksho PApplication of computer Vision, 1994:138-142.[19] ALLINSON N M. Face Recognition: From Theory to Applications[M].Computer and Systems Sciences, 1998,163:446-456.
  • 5ALLINSON N M. Face Recognition: From Theory to Applications[ M]. Computer and Systems Sciences, 1998, 163:446-456.
  • 6PARK U, TONG Y, JAIN A K. Age-Invariant face recognition [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5):947-954.
  • 7TURK M, PENTLAND A. Eigenfaces for recognition [J].Journal of Cognitive Neuroscience, 1991, 3: 71-86.
  • 8BELHUMEUR P, HESPANFA J, KIREGEMAN D. Eigenfaces vs. fisherfaces: recognition using class specific linear projection [J].IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 9TENENBAUM J B, SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction [J].Science, 2000, 290:2319-2323.
  • 10ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [J].Science, 2000, 290:2323-2326.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部