期刊文献+

迭代硬阈值压缩感知重构算法——IIHT 被引量:10

IIHT:New improved iterative hard thresholding algorithm for compressive sensing
下载PDF
导出
摘要 研究了压缩感知信号重构算法的理论,针对迭代硬阈值(IHT)重构算法对测量矩阵的过分依赖、计算复杂度高、运算时间长的缺点,通过修订迭代硬阈值重构算法的代价函数和自适应地调整迭代步长的选取原则,设计了一种迭代硬阈值重构算法——IIHT。IIHT算法显著提高了信号精确重构的概率,降低了算法的计算复杂度,进一步减少了算法的运算时间,加快了算法的收敛速度。 To overcome the shortcomings of the overdependence on the measurement matrix,the high computation complexity,the long computation time of the Iterative Hard Thresholding(IHT) algorithm,a new improved iterative hard thresholding(IIHT) algorithm was proposed by studying the theory of signal reconstruction for compressive sensing.It improved the cost function and the selection method of step size for the IHT algorithm.The simulation results show that the proposed algorithm increases the probability of recovery and the speed of convergence and reduces the computational complexity and time.
出处 《计算机应用》 CSCD 北大核心 2011年第8期2123-2125,2129,共4页 journal of Computer Applications
基金 广东省自然科学基金资助项目(9151170003000017)
关键词 迭代 硬阈值 压缩感知 iteration hard thresholding compressive sensing
  • 相关文献

参考文献21

  • 1DONOHO D L. Compressed sensing [ J]. IEEE Transactions on In- formation Theory, 2006, 52(4) : 1289 - 1306.
  • 2DONOHO D L, TSAIG Y. Extensions of compressed sensing [ J]. Signal Processing, 2006, 86(3) : 533 - 548.
  • 3DONOHO D L. For most large underdetermined systems of linear e- quations the minimal ll-norm solution is also the sparsest solution [J]. Communications on Pure and Applied Mathematics, 2006, 59 (6) : 797 - 829.
  • 4CANDES E, TAO T. Decoding by linear programming [ J]. IEEE Transactions on Information Theory, 2005, 51( 12): 4203 -4215.
  • 5CANDES E, ROMBERG J. Quantitative robust uncertainty princi- ples and optimally sparse decompositions [ J]. Foundations of Com- putational Mathematics, 2006, 6(2) : 227 -254.
  • 6CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency infor- mation [ J]. IEEE Transactions on Information Theory, 2006, 52 (2) : 489 -509.
  • 7CANDES E, TAO T. Near-optimal signal recovery from random pro- jections: Universal encoding strategies? [ J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
  • 8NEEDELL D, VERSHYNIN R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [ J]. Foundations of Computational Mathematics, 2009, 9 (3) : 317 - 334.
  • 9NEEDELL D, TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples [ J]. Applied and Computational Harmonic Analysis, 2009, 26(3) : 301 -321.
  • 10DAI W, MILENKOVIC O. Subspace pursuit for compressive sens- ing signal reconstruction [ J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249.

二级参考文献111

  • 1吴宗亮,窦衡.一种广义最小二乘支持向量机算法及其应用[J].计算机应用,2009,29(3):877-879. 被引量:5
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3RENYI A. On measures of entropy and information [ EB/OL]. [2008 - 10 - 10]. http://digitalassets. lib. berkeley, edu/math/ ucb/text/math_s4_v1_article-27. pdf.
  • 4GIROLAMI M. Orthogonal series density estimation and the kernel eigenvalue problem [ J]. Neural Computation, 2002, 14(3) : 669 - 688.
  • 5R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 6Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 7Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 8E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 9E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 10Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.

共引文献737

同被引文献101

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部