期刊文献+

基于快速收敛LBP算法的图像分割 被引量:2

Image segmentation based on fast converging loopy belief propagation algorithm
下载PDF
导出
摘要 针对循环信度传播(LBP)算法计算量大及误分率高的问题,提出了一种基于快速局部区域收敛的LBP算法的图像分割方法。首先建立局部区域Gibbs能量模型,然后采用局部收敛的LBP算法对区域消息进行传播。为了提高LBP算法的运行速度,提出了一个有效的加速技术。最后,使用局部区域能量的最大后验准则(MAP)得到分割结果。实验结果表明,提出的算法得到了较好的分割结果,特别是在噪声和纹理区域,分割效果明显提升,同时具有较快的速度。 Large-scale computing and high mis-classification rate are two disadvantages of Loopy Belief Propagation(LBP) algorithm for image segmentation.A fast image segmentation method based on LBP algorithm was proposed.At first,a local region Gibbs energy model was built up.Then the region messages were propagated by LBP algorithm.In order to improve the running speed for LBP algorithm,an efficient speedup technique was used.At last,the segmentation result was obtained by the Maximum A Posterior(MAP) criterion of local region Gibbs energy.The experimental results show that the proposed algorithm not only obtains more accurate segmentation results,especially to noise or texture image,but also implements more fast.
出处 《计算机应用》 CSCD 北大核心 2011年第8期2229-2231,2235,共4页 journal of Computer Applications
基金 陕西省教育厅专项(2010JK640)
关键词 图像分割 循环信度传播算法 马尔可夫随机场模型 Gibbs能量模型 image segmentation Loopy Belief Propagation(LBP) algorithm Morkov Random Field(MRF) model Gibbs energy model
  • 相关文献

参考文献8

  • 1LAN X, ROTH S, HUTI'ENLOCHER D P, et al. Efficient belief propagation with learned higher-order Markov random fields [ C]// Proceedings of the 9th European Conference on Computer Vision, LNCS 3952. Berlin: Springer, 2006:269 -282.
  • 2ROTH S, BLACK M J. Fields of experts: A framework for learning image priors [ C]// IEEE Conference on Computer Vision and Pat- tern Recognition. Washington, DC: IEEE Computer Society, 2005: 86O - 867.
  • 3POTETZ B, TAI S L. Efficient belief propagation for higher order cliques using linear constraint nodes [ J]. Computer Vision and Im- age Understanding, 2008, 112(1) : 39 -54.
  • 4POTEqZ B. Efficient belief propagation for vision using linear constraint nodes [ C]// IEEE Conference on Computer Vision and Pattern Recog- nition. Washington, DC: IEEE Computer Society, 2007:1-8.
  • 5HOCHBAUM D S. An efficient algorithm for image segmentation, Markov random fields and related problems [ J]. Journal of theACM, 2001, 48(4): 686-701.
  • 6CHEN L, CET[N M, WILLSKY A S. Distributed data association for multi-target tracking in sensor networks [EB/OL]. [2011 -01 -15]. http://research, sabanciuniv, edu/1339/1/chen_FUS1ON05, pdf.
  • 7ELIDAN G, MCGRAW 3, KOLLER D. Residual belief propaga- tion: Informed scheduling for asynchronous message passing [ C]// Proceedings of the 22th Conference on Uncertainty in Artificial Intel- ligence, Cambridge, MA, USA: AUAI Press, 2006: 165- 173.
  • 8YANG QINGXIONG, WANG LIANG, YANG RUIGANG, et al. Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handing [ J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2009, 31(3): 492 -504.

同被引文献95

  • 1李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 2徐先传,张琦.基于LBP算子的医学图像检索方法[J].微计算机信息,2007,23(04X):281-282. 被引量:3
  • 3SONKA M,HLAVAC V,BOYLE R.图像处理、分析与机器视觉[M].3版.艾海舟,苏延超,等,译.北京:清华大学出版社,2011.
  • 4HAMMERSLEY J M, CLIFFORD P. Markov fields on finite graphs and lattices [ EB/OL ]. ( 1968 ). http://www, cite ulike, org/group/ 4300/article/2335717.
  • 5BESAY J E. Spatial interaction and the statistical analysis of lattice systems[ J ]. Journal of the Royal Statistical Society B, 1974,36 (2) :192-236.
  • 6STAN Z L. Markov random field modeling in image analysis[ M]. New York : Springer-Verlag, 2009.
  • 7CHEN Fan, TANAKA K, HORIGUCHI T. Image segmentation based on Bethe approximation for Gaussian mixture model[ J]. Interdiscipli- nary Information Sciences ,2005,11 ( 1 ) :17-29.
  • 8CHOI H, BARANIUK R G. Multiscale image segmentation using wavelet-domain hidden Markov models [ J ]. IEEE Trans on Image Processing,2001,10(9) :1309-1321.
  • 9LEVADA A L M, MASCARENHAS N D A, TANNUS A, et al. Spa- tially non-homogeneous potts model parameter estimation on higher-or-der neighborhood systems by maximum pseudo-likelihood [ C ]//Proc of the 23rd Annual ACM Symposium on Applied Computing. New York :ACM Press, 2008 : 1733-1737.
  • 10ROTH S, BLACK M. Fields of experts : a framework for learning image priors [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, CA : IEEE Computer Society,2005 : 860- 867.

引证文献2

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部