期刊文献+

基于RBF神经元网络的风电功率短期预测 被引量:62

Short-term wind power forecast based on the Radial Basis Function neural network
下载PDF
导出
摘要 准确地预测风力发电的输出功率对电力系统调度、电力系统稳定性和风电场运行都具有重要意义。从实际运行的风电场获得了相关风速、环境温度和风电功率的历史数据,建立了基于径向基函数(RadialBasisFunction,RBF)神经元网络的短期风电功率预测模型。运用该模型进行了1h后的风电输出功率预测,预测误差在12%附近。通过将预测结果和实际风电输出功率比较,表明该方法预测精度较高且比较稳定。 Accurate wind power outputs forecasting plays an important role in power system dispatching,power system stability,and wind farm operation.Based on historical data from an operating wind farm such as wind speed,environmental temperature,wind power and so on,a short-term wind power forecasting model based on the well-developed Radial Basis Function(RBF) neural network is presented for hour-ahead forecasting,and the predicted error is about 12%.The forecasting results are compared with actual wind power outputs,and this shows that the presented method can lead to acceptable and stable forecasting results.
出处 《电力系统保护与控制》 EI CSCD 北大核心 2011年第15期80-83,共4页 Power System Protection and Control
基金 广东省绿色能源技术重点实验室资助项目(2008A060301002) 国家自然科学基金资助项目(70673032)~~
关键词 风力发电功率 电力系统调度 风电场 RBF神经网络 短期预测 wind power power system dispatching wind farm RBF neural network short-term forecast
  • 相关文献

参考文献14

  • 1雷亚洲.与风电并网相关的研究课题[J].电力系统自动化,2003,27(8):84-89. 被引量:457
  • 2Alexiadi S M, Dokopoulos P, Sahsamanoglou H. Shortterm forecasting of wind speed and related electrical power [J]. Solar Energy, 1998, 63(1): 61-68.
  • 3Bossanyi E A. Short-term wind prediction using Kalman filters [J].Wind Engineering, 1985, 9(1): 1-8.
  • 4Kamal L, Jafri Y Z. Time series models to simulate and forecast hourly averaged wind speed in Wuetta, Pakistan[J]. Solar Energy, 1997, 61(1): 23-32.
  • 5Li Shuhui. Wind power prediction using recurrent multilayer perception neural networks[C].//Proceedings of IEEE Power Engineering Society General Meeting, Toronto, Ontario Canada, 2003: 2325-2330.
  • 6黄金花,彭晖.风电场短期风电功率的神经网络方法预测研究[J].电工电气,2009(9):57-60. 被引量:16
  • 7杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 8彭怀午,刘方锐,杨晓峰.基于人工神经网络的风电功率短期预测研究[J].华东电力,2009,37(11):1918-1921. 被引量:17
  • 9Damousis I G, Alexiadis M C, Theocharis J B, et al. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation[J]. IEEE Trans on Energy Conversion, 2004, 19(2): 352-361.
  • 10Alexiadis M C, Dokopoulos P S, Sahsamanoglou H S. Wind-speed and power forecasting based on spatial correlation models[J]. IEEE Trans on Energy Conversion, 1999, 14(3): 836-842.

二级参考文献110

共引文献1187

同被引文献584

引证文献62

二级引证文献558

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部