期刊文献+

负电子亲和势GaN光电阴极特性研究

STUDY ON CHARACTERISTICS OF NEGATIVE ELECTRON AFFINITY GAN PHOTOCATHODE
下载PDF
导出
摘要 分析了NEA GaN光电阴极的产生背景,介绍了NEA GaN光电阴极的结构以及工作模式,研究了GaN光电阴极的光电发射机理以及NEA特性的形成原因,p型GaN经过Cs、O处理后的有效电子亲和势约为-1.2eV。分析表明:充分激活后形成的双偶极层是表面真空能级降低的原因,体内产生的光电子按照光电发射的"三步模型"逸出到真空中。 The appearance background of NEA GaN photocathode was analysed, the structure and operation mode of NEA GaN photocathode were discussed. The photoemission mechanism and the formation cause of NEA property for GaN photocathode were studied. The effective electron affinity for p-GaN is about -1.2 eV after being processed with Cs and O. The analysis shows : the reason of the reduction of vacuum energy level is the formation of the double dipole layer after being fully activated successfully. The photoelectrons from the bulk will escape to the vacuum according to photoemission "3-step model" theory.
出处 《南阳理工学院学报》 2011年第2期1-4,共4页 Journal of Nanyang Institute of Technology
基金 河南省教育厅自然科学研究计划项目(批准号:2010C510009)资助的课题
关键词 负电子亲和势 GAN 光电阴极 能级 negative electron affinity GaN photocathode energy level
  • 相关文献

参考文献8

  • 1彭冬生,冯玉春,王文欣,刘晓峰,施炜,牛憨笨.一种外延生长高质量GaN薄膜的新方法[J].物理学报,2006,55(7):3606-3610. 被引量:13
  • 2王三胜,顾彪,徐茵,秦福文,杨大智.GaN基材料生长及其在光电器件领域的应用[J].电子器件,2002,25(1):1-8. 被引量:10
  • 3Machuca F,Sun Y,Liu Z,et al.Prospect for high bright-ness III-nitride electron emitter. Journal of Vacuum Science and Technology . 2000
  • 4Turnbull A A,Evans G B.Photoemission from GaAs-Cs-O. Journal of Physics . 1968
  • 5Siegmund O,Vallerga J,McPhate J,et al.Development of GaN photocathodes for UV detectors. Nuclear In-struments and Methods in Physics Research A . 2006
  • 6M. P. Ulmer,W. B. Wessels,F. Shahedipour,R. Y. Korotkov,C. Joseph,T. Nihashi.Progress in the fabrication of GaN photo-cathodes. Proceedings of SPIE the International Society for Optical Engineering . 2001
  • 7Spicer W E,Herrera Gбm ez A.M odern theory and application of photocathodes. Proc. S P I E . 1993
  • 8Scheer J J,Van Laar J.GaAs-Cs: a new type of photoemitter. Solid State Communications . 1965

二级参考文献78

  • 1Gaska R,Yang J W,Osinsky A,et al. Ibid,1998;72:707-709
  • 2khan M A,Kuznia J N,Van Hove J M,et al. Appl Phys Lett[J],1991;59 :1449-1451
  • 3Koukitu A,Takaashi N,Taki T,et al. J Crys Growth[J],1997;170:203- 208
  • 4Nakamura S,Senoh M,Iwasa N,et al. Appl Phys Lett[J],1995;67:1868- 1870
  • 5Nakamura S,Senoh M,Iwasa N,et al. Jpn J Appl Phys[J],1995; 34:797 -799
  • 6Nakamura S,Senoh M,Nagahama S,et al. Jpn J Appl Phys[J],1996:35:74 -75
  • 7Nakamura S,Senoh M,Nagahama S,et al. Appl Phys Lett[J],1996;69:303 4-3036
  • 8Nakamura S,Senoh M,Nagahama S,et al. Appl Phys Lett[J],1998;72:20 14-2016
  • 9Nakamura S,Senoh M,Nagahama S. Appl Phys Lett[J],1997;60:616-618
  • 10pankove J I. Materials Science and Engineering[J],1999; B61:305-309

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部