期刊文献+

氨水竖管降膜蒸发实验和理论研究 被引量:3

Experimental and Theoretical Study of Ammonia Water Falling Film Evaporation in a Vertical Tube
原文传递
导出
摘要 为了增强氨水竖管降膜蒸发过程中的热质传递效果,建立了降膜蒸发过程的数学模型,基于有限容积法对模型进行了求解,并通过实验验证了模型的准确性,用数学模型计算了溶液的速度场、浓度场、膜厚和换热量,得出结论:降膜蒸发过程的入口段小于100 mm,在入口段,溶液的流速和膜厚都发生剧烈的变化;最佳的布膜厚度是由溶液进口流量决定的;单位管长氨气的蒸发量随管长由上而下逐渐减小,前3 m管长的蒸发量占整个蒸发量的80.64%。基于建立的数学模型,可以确定不同流量下的布膜器最佳布膜厚度和管道最佳长度,为降膜换热器的优化设计提供参考。 To enhance the heat mass transfer effectiveness during the ammonia water falling film evaporation in a vertical tube,established was a mathematical model for the falling film evaporation process and the finite volumetric method was based to seek solutions to the model in question.Finally,the correctness of the model was verified through a test and the speed field,concentration field,film thickness and heat exchange quantity of the liquid solution were calculated by using the model.The authors have arrived at a conclusion that the inlet section of the falling film evaporation process is confined to a length of less than 100 mm,in which the speed and film thickness of the liquid solution will undergo a drastic change.The analytic and calculation results show that the optimal film thickness is determined by the flow rate of the solution at the inlet;the evaporization quantity of ammonia in a unit tube length will gradually decrease with an increase of the tube length from the top to bottom.The evaporation quantity in the first 3-meter length of the tube accounts for 80.64% of the total evaporation quantity.Through a calculation by using the model in question,the optimal film thickness obtained by using the film distributor and the optimal tube length can be determined at various flow rates,thus providing a useful reference and underlying basis for optimized design of falling film heat exchangers.
出处 《热能动力工程》 CAS CSCD 北大核心 2011年第4期406-409,490-491,共4页 Journal of Engineering for Thermal Energy and Power
基金 国家863计划基金资助项目(2007AA05Z442)
关键词 竖管 降膜 地热发电 热质传递 KALINA循环 vertical tube falling film geothermal power generation heat mass transfer Kalina cycle
  • 相关文献

参考文献8

  • 1ASSAD M El liAJ,LAMPINEM MARKKU J. Mathematical model- ing of falling liquid film evaporation process [ J 1. International Journal of Refrigeration, 2002, 25(7):985-991.
  • 2牛晓峰,王良虎,杜垲.一种氨水垂直降膜吸收传质模型[J].化工学报,2006,57(3):503-508. 被引量:7
  • 3徐士鸣,袁一.垂直管内降膜吸收过程热-质传递数值计算问题的研究[J].大连理工大学学报,1997,37(4):414-419. 被引量:8
  • 4NIU XIAOFENG,DU KAI,DU SHUNXIANG. Numerical analysis of falling film absorption with ammonia-water in magnetic field [ J ]. Applied Thermal Engineering,2007,27( 11 -12) :2059 -2065.
  • 5LOLOS P A, ROGDAKIS E D. A Kalina power cycle driven by renewable energy sources[ J ]. Energy, 2009, 34 (4) :457 - 464.
  • 6SIRKO OGRISECK. Integration of Kalina cycle in a combined heat and power plant, a case study[ J]. Applied Thermal Engineering, 2009, 29(14- 15): 2843-2848.
  • 7KHALED GOMMED, GERSHON GROSSMAN, KOEING MICHAEL S. Numerical study of absorption in a laminar falling film of ammonia water[ J ]. ASHRAE Transactions, 2001,107:453 - 462.
  • 8卜宪标,谭羽非,李炳熙,宋传亮.盐穴地下储油库热质交换及蠕变[J].西安交通大学学报,2009,43(11):104-108. 被引量:13

二级参考文献28

共引文献25

同被引文献39

  • 1朱平.机械压缩式热泵蒸发的优化计算[J].徐州师范大学学报(自然科学版),2009,27(1):84-86. 被引量:5
  • 2梁林,韩东.蒸汽机械再压缩蒸发器的实验[J].化工进展,2009,28(S1):358-360. 被引量:43
  • 3黄维军,邓先和,黄德斌.横纹槽管结构优化的正交数值模拟试验研究[J].化工学报,2005,56(8):1445-1450. 被引量:17
  • 4骆江锋,龙江启.新结构滑片压缩机研究[J].食品与机械,2006,22(3):117-119. 被引量:1
  • 5Lessard A. Mechanical vapor reeompression (MVR) applied to acid rinse water recovery[J] Wire Journal International, 2003, ,36(7): 88:91.
  • 6Weimer L D, Fosberg T M, Musil L A. Maximizing water re covery/reuse via mechanical vapor-recompression (MVR) eval?O- ration[J]. Environmental Progress, 1983, 2(4): 2464250.
  • 7Liang L, Han D, Ma R, et al. Treatment of high-concentration wastewater using double-ef{ect mechanical vapor recompression [J]. Desalination, 2013(314) : 139:146.
  • 8Tuan C, Cheng Y, Yeh Y, et al. Performance assessment of a combined vacuum evaporator Mechanical vapor re-compressiontechnology to recover boiler blow-down wastewater and heat [J] Sustain Environ Res, 2013, 23(2) : 139- 129.
  • 9Alexander K, Donohue B, Feese T, et al. Failure analysis of an MVR (mechanical vapor recompressor) Impeller[J]. Engineer- ing Failure Analysis, 2010, 17(6): 1 345:1 358.
  • 10赵博.水蒸气再压缩热泵系统的性能分析[D].北京:北京工业大学,2012.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部