期刊文献+

支持向量机灰熔点预测模型研究 被引量:13

Study of a Support Vector Machine-based Model for Predicting Melting Points of Ash
原文传递
导出
摘要 根据电厂对混煤灰熔点计算的需求,采用支持向量机算法和BP神经网络算法对灰熔点进行了建模和对比研究,灰熔点模型采用灰成分作为输入量,灰熔点(ST)作为输出量,用所建模型对单煤和混煤灰熔点进行预测,然后将预测结果与实验结果进行比较。支持向量机模型对单煤和混煤的预测误差分别为0.57%和1.94%,BP神经网络模型对单煤和混煤的预测误差分别为1.925%和10.43%,结果表明,支持向量机模型对单煤和混煤灰熔点的预测更精确。 To the demand of ash melting point calculation of blended coal in power plants,a model for melting points of ash was established and a contrast study was conducted by using the support vector machine algorithm and BP(back propagation) neural network algorithm.The model in question used the ash composition as a input and the melting point of ash as an output.It was employed to predict the ash melting points of a single coal and blended one.Then,the prediction results were compared with the test ones.The errors of the model based on the support vector machine were 0.57% and 1.94 % respectively in predicting the single coal and blended one while those of the model based on the BP neural network were 1.925% and 10.43% respectively in predicting the above-mentioned two types of coal.The research results show that the model based on the support vector machine is more precise when predicting the ash melting points of a single coal and blended one.
出处 《热能动力工程》 CAS CSCD 北大核心 2011年第4期436-439,494-495,共4页 Journal of Engineering for Thermal Energy and Power
基金 国家自然科学基金资助项目(60904058)
关键词 灰熔点 支持向量机 BP神经网络 预测 ash melting point support vector machine BP(back propagation) neural network prediction
  • 相关文献

参考文献7

  • 1GRAY V R. Prediction of ash fusion temperature from ash composition for some New Zealand coals[ J]. Fuel, 1987, 66 (9) : 1230 - 1239.
  • 2LOLjA S A, HAXHI H, MARTFIN D J. Correlations in the properties of Albanian coals [ J ]. Fuel,2002,81 (9) : 1095 - 1100.
  • 3LOLJA SAIMIR A, HAXHI H,DHIMITR1 R,et al. Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes[J]. Fuel, 2002, 81(17) :2257 -2261.
  • 4KALOGIROU S A. Artificial intelligence for the modeling and control of combustion processes;A review[ J]. Progress in Energy and Combustion Science,2003,29 (6) :515 - 566.
  • 5王春林,周昊,周樟华,凌忠钱,李国能,岑可法.基于支持向量机的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2005,25(20):72-76. 被引量:98
  • 6Vapnik.统计学习理论[M].张学工,译.北京:电子工业出版社,2004.
  • 7KEERTHI K, LIN C J. Asymptotic behaviors of support vector machines with Gaussian kernel [ J ]. Neural Computation, 2003, 153 (3) :1667 - 1689.

二级参考文献16

  • 1占勇,丁屹峰,程浩忠,曾德君.电力系统谐波分析的稳健支持向量机方法研究[J].中国电机工程学报,2004,24(12):43-47. 被引量:60
  • 2张国云,章兢.基于模糊支持向量机的多级二叉树分类器的水轮机调速系统故障诊断[J].中国电机工程学报,2005,25(8):100-104. 被引量:36
  • 3张学工译 Vapnik著.统计学习理论[M].北京:电子工业出版社,2004..
  • 4Keerthi S S,Lin C J.Asymptotic behaviors of support vector machines with Gaussian kernel[J].Neural Computation,2003,15(7):1667-1689.
  • 5Lin H T,Lin C J.A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods[EB] .March 2003.http:∥www.csie.ntu.edu.tw/~cjlin/papers.html.
  • 6Maohong Fan,Robert C.Brown.Precision and accuracy of photoacoustic measurements of unburned carbon in fly ash[J].Fuel,2001,80(11): 1545-1554.
  • 7Katarzyna Styszko-Grochowiak,Janusz Golas,Henryk Jankowski et al. Characterization of the coal fly ash for the purpose of improvement of industrial on-line measurement of unburned carbon content[J]. Fuel, 2004,83(13):1847-1853.
  • 8Ouazzane A K,Castagner J L,Jones A R et al.Design of an optical instrument to measure the carbon content of fly ash[J].Fuel, 2002,81(15):1907-1911.
  • 9李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..
  • 10张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272

共引文献141

同被引文献132

引证文献13

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部