期刊文献+

用分数维空间方法研究量子阱中激子效应对三次谐波产生的影响(英文)

Exciton effects on third-harmonic generation in quantum wells via fractional-dimensional space approach
下载PDF
导出
摘要 运用分数维空间方法理论研究了GaAs/AlGaAs无限深和有限深方形量子阱中激子效应对三次谐波产生的影响。利用分数维空间模型获得波函数和束缚能级为空间维度的函数,而空间维度数是阱宽的函数。无限深方阱的维度数随着阱宽的减小从三维极限过渡到二维;而在有限深阱中,当维度数达到一个极值后,维度数随阱宽的减小而增大。采用密度矩阵和迭代法导出三次谐波的表达式。数值结果表明,考虑激子效应的三次谐波系数比只考虑电子状态的系数增大40%左右,并且三次谐波系数大小依赖于激子的受限程度。结果还表明在弛豫率较小情况下可以获得较大的三次谐波系数。 Exciton effects on the third-harmonic generation in GaAs/AlGaAs infinite and finite square quantum wells are calculated within the framework of the fractional-dimensional space approach.The wave functions and bound energies are obtained as functions of spatial dimensionality and the dimension is a function of the well width.For an infinite confining potential the dimension(D) has a transition from the 3D limit to 2D limit when the well width decreases.However,in a finite well,when the well width decreases below a given value,the dimension increases.The analytical expression of the third-harmonic generation is described using the compact density method and the iterative procedure.The numerical results show that the third-harmonic generation coefficient with considering exciton effects is 40%greater than the one without considering exciton effects and it is very sensitively dependent on the exciton confinement.In addition,the smaller the relaxation constant is,the larger the third-harmonic generation will be.
出处 《量子电子学报》 CAS CSCD 北大核心 2011年第4期473-482,共10页 Chinese Journal of Quantum Electronics
基金 Supported by Foundation for Distinguished Young Talents in Higher Education of Guangdong (LYM08068) Science and Technology Plan Projects in Guangdong Province(2010A080802002,2010B080704002, 2010B090400130)
关键词 非线性光学 三次谐波 分数维空间 激子效应 量子阱 nonlinear optics; third-harmonic generation; fractional-dimensional space; exciton effects; quantum wells
  • 相关文献

参考文献2

二级参考文献30

  • 1赵翠兰,丁朝华,肖景林.柱型量子点中弱耦合磁极化子的激发态性质[J].Journal of Semiconductors,2005,26(10):1925-1928. 被引量:8
  • 2F.L.Madarasz,F.Szmulowicz,F.K.Hopkins,and D.L.Dorsey,Phys.Rev.B 49 (1994) 13528.
  • 3S.Schmitt-Rink,D.S.Chemla,and D.A.B.Miller,Adv.Phys.38 (1989) 89.
  • 4A.Vonlehmen,J.E.Zucker,J.P.Heritage,D.S.Chemla,and A.C.Gossard,Appl.Phys.Lett.48 (1986) 1479.
  • 5A.Vonlehmen,J.E.Zucker,J.P.Heritage,and D.S.Chemla,Phys.Rev.B 35 (1987) 6479.
  • 6K.X.Guo and C.Y.Chen,J.Infrared Millim.Waves 16(2) (1997) 93.
  • 7K.X.Guo and C.Y.Chen,J.Phys.Conden.Matter 7(1995) 6583.
  • 8Cui-Hong Liu,Kang-Xian Guo,Chuan-Yu Chen,and Ben-Kun Ma,Physica E 15 (2002) 217.
  • 9A.Thilagam and M.A.Lohe,Physcia E 25 (2005) 625.
  • 10E.Rosencher and Ph.Bois,Phys.Rev.B 44 (1991) 11315.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部