期刊文献+

结合粗糙集和禁忌搜索的网络流量特征选择

Feature selection of network traffic using a rough set and tabu search
下载PDF
导出
摘要 针对网络流量特征属性的优化选择问题,提出了一种结合粗糙集和禁忌搜索的网络流量特征选择方法(RS-TS).该方法通过粗糙集算法对网络流量特征属性进行约简,将所得到的特征子集作为禁忌搜索的初始解,并利用禁忌搜索得到最优特征子集.实验验证RS-TS方法优于基于GA的特征选择方法和基于IG的特征选择方法,能够有效地去除网络流量的冗余特征属性,提高网络流量分类精度. A feature selection of network traffic using a rough set and tabu search (RS-TS) was proposed for the purpose of optimization in the feature selection of traffic classification. This approach reduced the traffic feature attribute with a rough set and established the feature subset as the initial value of a tabu search, as well as the optimal feature subset on the basis of a tabu search. The optimal feature subset with a tabu search can be selected on the basis of a feature subset. In contrast with the traditional feature selection methods based on GA and IG, RS-TS was vaXidated optimal by experimental results. It can diminish redundant feature attribution of network traffic effectively and greatly improve the classification accuracy.
出处 《智能系统学报》 2011年第3期254-260,共7页 CAAI Transactions on Intelligent Systems
基金 国家"863"计划资助项目(2006AA01Z232 2009AA01Z212 2009AA01Z202) 江苏省自然科学基金资助项目(BK2007603) 江苏省高技术研究计划资助项目(BG2007045) 江苏省重大科技支撑计划资助项目(BE2008134) 江苏省科技成果转化专项基金资助项目(BA2007012)
关键词 粗糙集 禁忌搜索 特征选择 网络流量 rough set tabu search feature selection network traffic
  • 相关文献

参考文献18

  • 1NGUYEN T T, ARMITAGE G. A survey of techniques for internet traffic classification using machine learning [ J ]. IEEE Communications Surveys and Tutorials, 2008, 10 (4) : 56-76.
  • 2CALLADO A, KAMIENSKI C. A survey on internet traffic identification[J]. IEEE Communications Surveys and Tuto- rials, 2009, 11 (3) : 37-52.
  • 3ESTE A, GRINGOLI F, SALGARELLI L. Support vector machines for TCP traffic classification [ J 1- Computer Net- works, 2009, 53 (14) : 2476-2490.
  • 4POLAT K, GUNES S. A new feature selection method on classification of medical datasets : kernel F-score feature se- lection[ J]. Expert Systems with Applications, 2009, 36 (7) : 10367-10373.
  • 5PATRICIA E N, ENGELBRECHT A P. A decision rule- based method for feature selection in predictive data mining [J]. Expert Systems with Applications, 2010, 37 ( 1 ) :602-609.
  • 6BARALDI P, PEDRONI N, ZIO E. Application of a nicked Pareto genetic algorithm for selecting features for nuclear transients classification[ J ]. International Journal of Intelli- gent Systems, 2009, 24(2) : 118-151.
  • 7KIRA K, RENDELL L A. Feature selection problem : tradi- tional methods and a new algorithm[ C ]//Proceedings of the Tenth National Conference on Artificial Intelligence. San Jo- se, USA, 1992: 129-134.
  • 8LI Yongming, ZHANG Sujuan, ZENG Xiaoping. Research of multi-population agent genetic algorithm for feature selec- tion[ J]. Expert Systems with Applications, 2009, 36 (7): 11570-11581.
  • 9HUANG Chenglung, DUN Jianfan. A distributed PSO-SVM hybrid system with feature selection and parameter optimiza- tion[ J ]. Applied Soft Computing Journal, 2008, 8 (4) : 1381-1391.
  • 10ZHANG Li, MENG Xiangru, WU Weijia, et al. Network fault feature selection based on adaptive immune clone se- lection algorithm [ C ]//Proceedings of the 2009 Interna- tional Joint Conference on Computational Sciences and Op- timization. Sanya, China, 2009: 969-973.

二级参考文献11

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部