摘要
用渐近分数得到了两个结果:(1)用n~(1/2)的渐近分数表示了纯循环二次无理数α=(a+(n~(1/2)))/b的循环节所构成的分数,从而引出了用辗转相除法给出α的连分数的算法.(2)当A为合数时,用渐近分数给出了不定方程x2-ny2=±A的另一解法.
This study addresses convergent. The findings are as follows, ( 1 ) the convergent of √n represents the fraction composed by repetend of pure recurring quadratic irrational number α=(α+√n)/b and arithmetic of continued fraction of ot is educed with method of successive division. (2) When A is a composite number, another solution of indeterminate equations x^2-ny^2=±A is given with convergent.
出处
《西安文理学院学报(自然科学版)》
2011年第3期34-36,共3页
Journal of Xi’an University(Natural Science Edition)
基金
西安建筑科技大学教改项目(JG080113)
关键词
连分数
循环节
渐近分数
continued fraction
repetend
convergent