摘要
利用Brouwer不动点定理,得到一阶脉冲时滞微分方程y(t)=y(t)[p(t)-(Q(t)yn(t-aω))/(R+ym(t-aω))-λ(t)y(t)],t≠tk,y(tk+)=(1+bk)y(tk),k∈N,存在ω-周期正解y*(t)的充分条件,推广了已有文献中的相关结果.
Using a fixed point theorem of Brouwer,we show the existence of periodic positive solution of first order impulsive delay differential equation:y(t)=y(t)[p(t)-(Q(t)yn(t-aω))/(R+ym(t-aω))-λ(t)y(t)],t≠tk,y(tk+)=(1+bk)y(tk),k∈N, the result extends the corresponding known results.
出处
《太原师范学院学报(自然科学版)》
2011年第2期63-65,共3页
Journal of Taiyuan Normal University:Natural Science Edition
关键词
脉冲时滞微分方程
周期正解
BROUWER不动点定理
初值问题
impulsvie delay differential equation
positive periodic solution
Brouwer fixed-point
initial-value problem