期刊文献+

带有临界Sobolev指数的椭圆方程组的解

Solutions to the Elliptic Systems Involving Critical Sobolev Exponents
下载PDF
导出
摘要 研究了一类带有临界Sobolev指数和Hardy项的椭圆方程组,运用变分方法,证明了在一定条件下椭圆方程组非负解的存在性. In this paper,a singular elliptic system is investigated,which involves the critical Sobolev exponents and Hardy-type terms.Employing the variational methods,the existence of nonnegative solutions to the system is proved.
出处 《中南民族大学学报(自然科学版)》 CAS 2011年第1期101-104,共4页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(10771219)
关键词 椭圆方程组 临界指数 HARDY不等式 非负解 变分方法 elliptic system critical exponent Hardy inequality nonnegative solution variational method
  • 相关文献

参考文献8

  • 1Caffarelli L,Kohn R,Nirenberg L. First order inter- polation inequality with weights [ J]. Compos Math, 1984,53(3) : 259-275.
  • 2Hardy G, Little wood J, Polya G. Inequalities [M]. Combridge: Combridge University Press, 1988: 239- 243.
  • 3Egnell H. Elliptic boundary value problems with sin- gular coefficients and critical nonlinearltles. [nd;.ana Univ Mah Pura AppI, 1989,38 (2) : 235-251.
  • 4Terracini S. On positive solutions to a class of equa- tions with a singular coefficient and critical exponent [J]. Adv Differential Equations, 1996,1 (2) :241-264.
  • 5Huang Y, Kang D. On the singular elliptic systems involving multiple critical Sobolev exponents[J]. Nonlinear Anal, 2011,74 (2) : 400-412.
  • 6康东升,黄燕,刘殊.一类拟线性椭圆问题极值函数的渐近估计[J].中南民族大学学报(自然科学版),2008,27(3):91-95. 被引量:9
  • 7Brezis H,Nirenberg H. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents [J]. Comm Pure Appl Math,1983,36(2):437-477.
  • 8Ambrosetti A ,Rabinowitz H. Dual variational methods in critical point theory and applications [J]. J Funet Anal, 1973,14 (2) : 349-381.

二级参考文献16

  • 1Cao D,Han P. Solutions to critical elliptic equations with multi-singular inverse square potentials [J]. J Differential Equations,2006,224(2):332-372.
  • 2Cao D,Peng S. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms[J]. J Differential Equations, 2004,193 (2) : 424- 434.
  • 3Ekeland I,Ghoussoub N. Selected new aspects of the calculus of variations in the large[J]. Bull Amer Math Soc, 2002,39 (1) : 207-265.
  • 4Felli V, Terracini S. Elliptic equations with multisingular inverse-square potentials and critical nonlinearity [ J ]. Comm Partial Differential Equations, 2006,31 (2) : 469-495.
  • 5Felli V, Terracini S. Nonlinear Schrodinger equations with symmetric multi-polar potentials [J]. Cale Var Partial Differential Equations ,2006,27(1) :25-58.
  • 6Ferrero A, Gazzola F. Existence of solutions for singular critical growth semilinear elliptic equations [J]. J Differential Equations, 2001, 177 (2): 494- 522.
  • 7Jannelli E. The role played by space dimension in elliptic critical problems [ J ]. J Differential Equations, 1999,156 (2) : 407-426.
  • 8Kang D, Peng S. The existence of positive solutions for elliptic equations with critical Sobolev-Hardy exponents[J]. Appl Math Letters, 2004, 17 (4) : 411-416.
  • 9Kang D, Peng S. Existence of solutions for elliptic equations with critical Sobolev-Hardy exponents[J]. Nonlinear Anal ,2004,56(4) : 1 151-1 164.
  • 10Kang D,Peng S. Existence of solutions for elliptic problems with critical Sobolev-Hardy exponents[J]. Israel J Math, 2004,143 (5) : 281-297.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部