期刊文献+

基于兴趣点特征的多类物体识别 被引量:2

Multiclass Object Recognition Based on Features of Interest Points
下载PDF
导出
摘要 针对多类物体识别中计算量大、识别率低等问题,在现有模拟视觉系统的计算模型基础上,对原模型进行了改进,提出了改进模型.首先,通过有效的算法提取图像中的兴趣点,并以此为中心选择适当尺度的小块作为特征模板,从而提高模板有效性;然后,确立了以固定兴趣点个数的方法来选择兴趣点,从而解决多类物体识别中兴趣点选取的阈值问题.对多类物体分类识别的实验结果表明:改进后的模型比原有模型具有更快的识别速度和更高的识别率. In order to solve the problems of large amount of computing and low recognition in multiclass object recognition,we proposed a model,which was improved from an existing a computing model of the analog visual systems.First,the interest points were extracted by effetive algorithm,and conidered as center point,by which proper scale small pieces were choose as the characteristic template,so that it can improve the effectiveness of the template.Then,the coordination in all categories target threshold level issues was solved by selecting several number of points.The results show that the improved model can recognize more exactly and quickly than existing one.
出处 《中南民族大学学报(自然科学版)》 CAS 2011年第2期61-66,共6页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(60972158)
关键词 多类物体识别 计算模型 兴趣点 multiclass object recognition computing model interest points
  • 相关文献

参考文献10

  • 1Fei-Fei L, Fergus R, Perona P. Learning generative visu- al models from few training examples: an incremental Bayesian approach tested on 101 object categories [ C ]// IEEE. Proc of the Workshop on Generative-ModeL Based Vision in Computer Vision and Paueru Recognition. Washington: IEEE,2004:59-70.
  • 2Wang G, Zhang Y, Fei-Fei L. Using dependent regions for object categorization in a generative framework [ C ]//IEEE. IEEE Computer Society Conference on Computer Vision and Patten Recognition. New York:IEEE, 2006: 1597-1604.
  • 3Grauman K, Darrell T. Pyramid match kernels:Discrimi- native classification with sets of image features [ C ]// IEEE. Proceedings of International Conference on Com- puter Vision. Washington: IEEE, 2005 : 1458 -1465.
  • 4Lazebnik S, Schmid C, Ponce J. Beyond bags of features : Spatial pyramid matching for recognizing natural scenecategories [ C ]//IEEE. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Rec- ognition. NewYork : IEEE ,2006:2169-2178.
  • 5Serre T, Wolf L, Poggio T. Object recognition with fea- tures inspired by visual cortex [ C ]//IEEE. Proc IEEE CVPR. Washington: IEEE Press, 2005:994-1000.
  • 6Mutch J,. Lowe D. Muhiclass object recognition using sparse, localized hmax features [ C ] // IEEE, Proc CVPR 2006. New York : IEEE Press,2006 : 11-18.
  • 7朱庆生,张敏,柳锋.基于HMAX特征的层次式柑桔溃疡病识别方法[J].计算机科学,2008,35(4):231-232. 被引量:4
  • 8李芹,练秋生.基于生物视觉模型的人脸识别设计[J].电视技术,2008,32(2):81-83. 被引量:4
  • 9Roll E, Deco G. The computational neuroscience of vi- sion [ M ]. Oxford : Oxford University Press, 2001.
  • 10Harris C, Stephens M. A combined comer and edge de- tector[ J ]. Image Vision Computting, 1998,6 : 121-128.

二级参考文献16

  • 1李志刚,傅泽田,李丽勤.基于机器视觉的农业植保技术研究进展[J].农业机械学报,2005,36(8):143-146. 被引量:22
  • 2RIESENHUBER M, POGGIO T. Hierarchical models of object recognition in cortex[J]. Nature Neuroscience, 1999,2(11):1019-1025.
  • 3SERRE T, WOLF L, POGGIO T. Object recognition with features inspired by visual cortex[C]//Proc. IEEE CVPR.[S.l.]:IEEE Press, 2005.
  • 4SERRE T, WOLF L. Robust object recognition with cortex-like mechanisms[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2007,29 (3):411-426.
  • 5HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. J PhysioI, 1962,160( 1 ):106-154.
  • 6POGGIO T, BIZZI E. Generalization in vision and motor control [J]. Nature, 2004,431(7010):768-774.
  • 7MUTCH J, LOWED G. Multiclass object recognition with sparse, localized features[C]//Proc. CVPR 2006. New York:IEEE Press, 2006:11-18.
  • 8ROLLS E T, DECO G. The computational neuroscience of vision [M]. Oxford UK:Oxford University Press, 2001.
  • 9Keck K O. Industry Costs of Living with Canker : The Legal, Public Policy and Dollar Implications of Halting the Eradication Effort. 2001. Florida Citrus Mutual, Lakeland, FL. 8 p. \
  • 10Sun X, Stall R E, Cubero J, et al. Detection and Characterization of an Unique lsolate of Citrus Canker Bacterium from Key Lime in Wellington and Lake Worth. Florida. Internation Citrus Canker Research Workshop, 2000(6) :20-22

共引文献6

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部