期刊文献+

船用惯导系统姿态角微分估计算法 被引量:1

Attitude differential estimation for shipborne inertial navigation system
下载PDF
导出
摘要 针对船用惯性导航系统,为提高姿态角微分估计精度,总结了实用的微分算法:滑动线性回归器、最佳差分法、5点回归、抛物线拟合、无滞后抛物线拟合和Kalman滤波器,推导了各方法对应的滤波器模型、幅值衰减特性和相位畸变特性,利用以上特性提出了设计微分滤波器的原则,并通过动态试验验证了以上理论,提出了组合最佳差分和Kalman滤波器的姿态角速率估计算法,其姿态角速率精度约为0.1421(°)/s,收敛时间为0.685 s,不仅具有很好的精度,并且有很好的收敛特性。 In order to improve the precision of attitude rate estimation for shipborne inertial navigation system,the paper summarizes the methods for differencing the attitude to get attitude rate,which are sliding linear regression,best difference,five points regression,parabolic fit approximation,parabolic fit approximation without lag and Kalman filtering.Filter models,amplitude damping characteristics and phase distortion characteristics of the former methods are deduced.According to former characteristics,principle of designing differential estimation is given.Through experiments,former theories are verified.Then the best difference and Kalman filtering are combined to estimate the attitude rate.The accuracy of attitude rate is about 0.1421(?)/s,and the convergence time is 0.685 s.Theoretical analysis and experiment results show that it has good precision and quick convergence.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2011年第3期273-276,共4页 Journal of Chinese Inertial Technology
基金 国防科技预研项目(51309050202)
关键词 姿态角速率 微分 幅值衰减 相位畸变 attitude rate difference amplitude damping phase distortion
  • 相关文献

参考文献8

  • 1Britting K R. Inertial navigation system analysis[M]. New York: John Wiley & Sons Inc., 1971: 42.
  • 2Khoder W, Fassinut-Mombot B, Benjelloun M. Inertial navigation attitude velocity and position algorithms using quaternion scaled unscented kalman filtering[C]//IEEE Industrial Electronics. Orlando, FL, 2008: 754-59.
  • 3Gu Dongqing, El-Sheimy N, Hassan T, et al. Coarse alignment for marine SINS using gravity in the inertial frame as a reference[C]//IEEE Position, Location and Navigation Symp. Monterey, CA, USA, 2008: 961-965.
  • 4伦加雷KV,马尔勒克RK.面向工程师的数字信号处[M].刘树棠,译.西安:西安交通大学出版社,2007:82.83.
  • 5胡广书.数字信号处理[M].北京:清华大学出版社,2003..
  • 6Ferraioli L, Hueller M, Vitale S. Discrete derivative estimation in LISA Pathfinder data reduction[J]. Classical and Quantum Gravity, 2009, 26: 094013-22.
  • 7Clark B L. The development of an adaptive Kalman target tracking filter[C]//Guidance and Control Con~. San Diego, Calif., United States, 1976: 365-82.
  • 8Savage C O, La Scala B F. Sensor management for tracking smart targets[J]. Digital Signal Processing, 2009, 19: 968-977.

共引文献189

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部