期刊文献+

基于遗传算法的带时间窗的多目标flow-shop调度

Multi-objective Flow-shop Scheduling with Time Window Based on Genetic Algorithm
下载PDF
导出
摘要 结合实际生产,引入机器的空闲时间建立了一个带有时间窗的flow-shop优化调度模型。通过非支配排序来进行群体虚拟适应度值的分配,引入精英解策略来保证算法的收敛性和解的多样性,运用小生境技术来避免局部收敛和早熟,维持种群多样性。通过仿真实验得到模型具有实际意义,算法具有可行性。 Combined with practical production, the spare time of the machines was introduced to build a flow-shop scheduling model with time window. The community hypothesized sufficiency value was carried on through non-control sorting the assignment. The elitist solutions to guar- antee the convergence of the algorithm and the multiplicity of the solutions were introduced. The niche technology was used to prevent local convergence and premature, maintain population diversity. Through the simulation experiment, it was obtained that the model have practical significance and the algorithm has the feasibility.
作者 杨乐伟
出处 《安徽农业科学》 CAS 北大核心 2011年第19期11357-11358,共2页 Journal of Anhui Agricultural Sciences
基金 合肥工业大学博士学位人员专项基金项目(GDBJ2010-001)
关键词 多目标优化 flow—shop调度 非支配排序 精英保留 小生境技术 Multi-objective optimization Flow-shop scheduling Non-control sorting Elitist preserve Niche approach
  • 相关文献

参考文献6

  • 1MURATA T,ISHIBUCHI H. Performance of Multi-Objective Genetic Algorithms for Flow-shop Scheduling Problems[ C ]//Proceedings of 14th International Conference on Production Research. Osaka,Japan:Osaka Institute of Technology and Satsunan University,1997:498-501.
  • 2ARROYO J E C,ARMENTANO V A. Genetic local search for multi-objective flow-shop scheduling problems [ J ]. European Journal of Operational Research,2005,167(3) :717 -738.
  • 3BASSEUR M,SEYNHAEVE F,TALBI E G. Design of Multi-Objective Evolutiortary Algorlthms:Application to the Flow-shop [ C ]//Preceedings of Congress on Evolutionary Computation ( C EC 2002 ). Piscataway, New lersey:IEEE Press,2002:1151-1156.
  • 4SRINIVAS N,DEB K. Multi-objective optimization using non-dominated sorting in genetic algorithms [ J ]. Evolutionary Computation, 1994,2 (3) : 221 -248.
  • 5DEB K,PRATAP A,AGARWAL S,et al. A Fast and elitist multi-objective genetic algorithm:NSGA-II[ J ]. IEEE Transactions on Evolutionary Computation,2002,6(2) :182-197.
  • 6HORN J,NAFPLIOTIS N,GOLDBERG D E.A niched pareto genetic algorithm for multi-objetive optimization[ C ]//Proceedings of the First IEEE Conference on Evolutinary Computation. Piseataway, New Jersey: IEEE Service Center, 1994:82-87.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部