期刊文献+

微流控芯片平台上细胞胞吞性能的研究

Research on Endocytosis Function of Cells on the Platform of Micro-fluidic Microchip
下载PDF
导出
摘要 [目的]考察流速对细胞吞噬二氧化硅荧光微球能力的影响。[方法]在自制微流控芯片上进行细胞培养以研究流动状态下细胞对二氧化硅微球的胞吞性能。[结果]显微镜照片显示,对照细胞发出强烈的红光,表明细胞吞噬了大量的二氧化硅微粒;在通道中培养的细胞在流动状态下传输二氧化硅微粒,其荧光强度比对照组低,随着通道内流速增大,其荧光强度下降,表明流动状态下细胞对二氧化硅的摄入量降低。以在细胞瓶中与二氧化硅微粒共培养6h后的细胞为对照组,以其荧光强度为100%,微通道中液流流速从0.023mm/s增加到0.079mm/s时,荧光强度从51.2%下降到28.2%,表明随着流速的增加,细胞对二氧化硅微球的吞噬量明显下降。[结论]该实验为研究细胞的胞吞性能提供了新方法。 [Objective]The aim was to investigate the influence of flow rate on the phagocytosis ability of cells on fluorescent silicon dioxide microsphere.[Method]The cells were cultured on self-made micro-fluidic microchip for researching the endocytosis function of cells on silicon dioxide microsphere in flowing state.[Result]In the microscopic images,the control cells emitted intense red light,indicating that there were a large number of silicon dioxide microparticles in them;the cells cultured in the channel were transmitting silicon dioxide microparticles in flowing state,their fluorescence intensity was lower than that of control group and decreasing along with the increase of flow rate in channel,showing that the intake amount of cells on silicon dioxide was decreased in flowing state.With cells co-cultured with silicon dioxide microparticles for 6 h in cell bottle as control group,setting their fluorescence intensity as 100%,when the flow rate of liquid stream in micro channel was increased from 0.023 mm/s to 0.079 mm/s,its fluorescence intensity was decreased from 51.2% to 28.2%,indicating that the phagocytosis amount of cells on silicon dioxide microparticles was decreased obviously along with the increase of flow rate.[Conclusion]This experiment provided a new method for researching the endocytosis function of cellls
出处 《安徽农业科学》 CAS 北大核心 2011年第19期11367-11369,共3页 Journal of Anhui Agricultural Sciences
基金 韩山师范学院青年科学基金(No.413611 413615)
关键词 微流控芯片 二氧化硅 胞吞 Micro-fluidic microchip Silicon dioxide Endocytosis
  • 相关文献

参考文献3

二级参考文献103

  • 1Waddell N.. Iubmb Life[J] , 2008, 60:437-440
  • 2Kuralay F. , Erdem A. , Abact S. , et al.. Electroanalysis[J] , 2008, 20:2563-2570
  • 3Gagnon Z. , Senapati S. , Gordon J. , et al.. Electroanalysis[J] , 2008, 29:4808-4812
  • 4Azek F. , Grossiord C. , Joannes M. , et al.. Analytical Biochemistry[J] , 2000, 284:107-113
  • 5Guo Z. , Guilfoyle R. A. , Thiel A. J. , et al.. Nucleic Acids Research[J] , 1994, 22:5456-5465
  • 6Miyachi H. , Masukawa A. , Ohshima T. , et al.. Journal of Clinical Microbiology[ J] , 2000, 38 : 18-21
  • 7Patrone G. , Puppo F. , Cusano R. , et al.. Biotechniques[J], 2000, 29:1012-1014
  • 8Olsen K. G. , Ross D. J. , Tarlov M. J.. Analytical Chemistry[J] , 2002, 74:1436-1441
  • 9Zangmeister R. A. , Tarlov M. J.. Analytical Chemistry[ J], 2004, 76:3655-3659
  • 10Zangmeister R. A. , Tarlov M. J.. Langmuir[J], 2003, 19:6901-6904

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部