期刊文献+

交配和黑光灯处理对棉铃虫Helicoverpa armigera生物钟基因cryptochromes mRNA表达的影响 被引量:1

Effect of Mating and Black Light on mRNA Expression of Clock Gene Cryptochromes of Helicoverpa armigera
下载PDF
导出
摘要 [目的]明确交配和黑光灯处理对棉铃虫生物钟基因cryptochromes mRNA表达的影响。[方法]应用实时定量PCR(SYBR Green)技术检测不同条件下棉铃虫cryptochromes(cry1和cry2)基因的表达。提取棉铃虫头部总RNA,经DNase I消化后进行反转录合成cDNA,并采用特异性引物分别对cry1、cry2和EF-1α基因进行实时定量PCR扩增。[结果]黑光灯处理棉铃虫2h,其cry1mRNA的表达量明显降低;cry2mRNA的表达量小于对照,但两者之间差异性并不显著。交配对棉铃虫cry1和cry2mRNA表达均存在显著影响,并且雌、雄两性cry1和cry2mRNA表达量在交配后随时间延长呈下降趋势。[结论]该结果对进一步研究cry基因的功能以及棉铃虫防治具有重要意义。 [Objective]The paper was to confirm the effect of mating and black light on mRNA expression of clock gene cryptochromes of Helicoverpa armigera.[Method]Quantitative real-time PCR(SYBR Green) technique was applied to detect the expression of cryptochromes gene(cry1 and cry2) of H.armigera under different conditions.Total RNA was extracted from the head of H.armigera,and carried out reverse transcription to synthesize cDNA after digested by DNase I.Specific primers were used to carry out quantitative and real-time PCR on cry1,cry2 and EF-1α gene,respectively.[Result] The expression of cry1 mRNA of H.armigera significantly decreased after exposure to black lamps for 2 h,the mRNA expression of cry2 was smaller than control but without significant difference.Mating had significant effect on mRNA expression of cry1 and cry2 of H.armigera,and the mRNA expression of cry1 and cry2 of male and female showed decrease trend with the prolongation of time after mating.[Conclusion]The result had important significance for further study on function of cry gene and the control of cotton bollworm.
出处 《安徽农业科学》 CAS 北大核心 2011年第19期11531-11533,11538,共4页 Journal of Anhui Agricultural Sciences
基金 国家"973"项目(No.2006CB102006) 公益性行业(农业)科研专项(201103012)
关键词 棉铃虫 cry1和cry2 实时定量PCR 黑光灯处理 交配 Helicoverpa armigera cry1 and cry2 Quantitative real-time PCR Black light Mating
  • 相关文献

参考文献22

  • 1REPPERT S M ,WEAVER D R. Coordination of circadian timing in mammals [ J ]. Nature ,2002,418:935-941.
  • 2CERIANI M F,DARLINGTON T K,STAKNIS D,et al. Light -Dependent Sequestration of Timeless by Cryptochrome [ J ]. Science, 1999,285:553-556.
  • 3EMERY P, SOW V,KANEKO M,et al. CRY,a Drosophila Clock and Light-Regulated Cryptochrome, Is a Major Contributor to Circadian Rhythm Resetting and Photosensitivity [ J ]. Cell, 1998,95:669-679.
  • 4SURI V,QIAN Z,HALL J C,et al. Evidence that the TIM Light Response Is Relevant to Light-Induced Phase Shifts in Drosophila melanogaster [J]. Neuron,1998,21:225 -234.
  • 5CASHMORE A R,JARILLO J A,WU Y J,et al. Cryptochromes :Blue Light Receptors for Plants and Animals[J]. Science,1999,284:760-765.
  • 6AHMAD M,CASHMORE A R. HY4 gene of A. thaliarta encodes a protein with characteristics of a blue-light photoreceptor[ J ]. Nature, 1993,366 : 162-166.
  • 7UN C T,TODO T. The cryptochromes[J]. Genome Biology,2005 ,6 ;220.
  • 8ZHU H,YUAN Q,BRISCOE A D,et al. The two CRYs of the butterfly[ J].Curr Biol,2005,15:953-954.
  • 9ZHU H,SAUMAN I,YUAN Q,et al. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation[J].PLoS BioI,2008,6(I):4.
  • 10YUAN Q,MUI'1'E'RVILLE D,BRISCOE A D,et al, Insect Cryptochromes: Gene Duplication and Loss Define Diverse Ways to Construct Insect Cir cadian Clocks[J]. Mol Biol Evol,2007,24(4):948-955.

二级参考文献9

共引文献30

同被引文献36

  • 1Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M, Wolf E, 2007. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J. Biol. Chem. , 282 ( 17 ) : 13011--13021.
  • 2Busza A, Emery-Le M, Rosbash M, Emery P, 2004. Roles of the two Drosophila cryptochrome structural domains in circadian photoreception. Science, 304 ( 5676 ) : 1503-- 1506.
  • 3Cashmore AR, 2003. Cryptochromes: enabling plants and animals to determine circadian time. Cell, 114 ( 5 ) : 537-- 543.
  • 4Cashmore AR, Jarillo J, Wu Y J, Liu DM, 1999. Cryptochromes:blue light receptors for plants and animals. Science, 284 ( 5415 ) :760--764.
  • 5Ceriani MF, Darlington TK, Weitz CJ, Kay SA, 1999. timeless by cryptochrome. Staknis D, Mas P, Petti AA, Light-dependent sequestration of Science, 285 (5427) :553--556.
  • 6Dunlap JC, 1999. Molecular bases for circadian clocks. Cell, 96(2) :271--290.
  • 7Emery P, So WV, Kaneko M, Hall JC, Rosbash M, 1998. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell, 95 ( 5 ) :669--679.
  • 8Emery P, Stanewsky R, Forster CH, Emery-Le M, Hall JC, Rosbash M, 2000. Drosophila CRY is a deep brain circadian photoreceptor. Neuron, 26 (2) :493--504.
  • 9Froy O, Gotter AL, Casselman AL, Reppert SM, 2003. Illuminating the circadian clock in monarch butterfly migration. Science, 300 (5623) : 1303--1305.
  • 10Hitomi K, DiTacchio L, Arvai SA, Yamamoto JP, Kim ST, Todo T,Tainer JA, Iwai S, Panda S, Getzoff ED, 2009. Functional motifs in the (6 -4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes. PNAS, 106(17) :6962--6967.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部