期刊文献+

连续温度变化对β-1,3-葡聚糖酶酶解酵母β-葡聚糖的影响 被引量:2

Effect of continuous temperature change on hydrolytic products of yeast β-glucan by endo-β-1,3-glucanase
原文传递
导出
摘要 为了探索反应温度对产物组分的影响,利用自制连续变化的温度梯度实验装置,研究了22℃~60℃(±0.1℃)区间内温度对一内切β-1,3-葡聚糖酶酶解酵母β-葡聚糖的影响,获得了酶解过程多点温度特性数据。分析表明:该酶酶解酵母β-葡聚糖的活化能为84.17 kJ/mol;以产物积累表示的最适酶解温度随时间延长呈指数下降;酶解产物组分受温度的影响,低温较高温获得的寡糖链长,高温区大于46℃可以获得以昆布二糖、昆布三糖为主的组分,而低温区小于30℃可以获得昆布五糖及更大分子量的产物。研究结果可为寡糖生产提供精确的温度控制参数。 In order to explore the influence of reaction temperature on the product composition,the effect of continuous temperature change(22 °C?60 °C,±0.1 °C) on hydrolysis of yeast β-glucan by endo-β-1,3-glucanase was determined by using self-developed Biochem-temperature Characteristic Apparatus.The activation energy of enzymatic hydrolysis of yeast β-glucan was 84.17 kJ/mol.The optimum temperature represented by accumulation of products decreased exponentially within a certain period of time.The components of the products were changed with reaction temperature.The length of oligosaccharides decreased with the increase of temperature.The main products were laminaribiose and laminaritriose at the temperature higher than 46 °C,while the main products were laminaripentaose and larger molecular weight components at the temperature lower than 30 °C.The results can provide precise parameters to control the reaction temperature of the production of 1,3-β-D-glucooligosaccharides.
出处 《生物工程学报》 CAS CSCD 北大核心 2011年第7期1092-1099,共8页 Chinese Journal of Biotechnology
基金 国家高技术研究发展计划(863计划)(No.2006AA10Z342) 山东省科学技术发展计划(No.2007GG30002020)资助~~
关键词 温度梯度 Β-1 3-葡聚糖酶 水解 β-1 3-D-葡寡糖 temperature gradient endo-β-1 3-glucanase hydrolysis 1 3-β-D-glucooligosaccrides
  • 相关文献

参考文献24

  • 1Halldal P, French CS. Algal growth in crossed gradients of light intensity and temperature. Plant Physiol, 1958, 33(4): 249-252.
  • 2Thompson PA. Characterization of the germination response to temperature of species and ecotypes. Nature, 1970, 225(5235): 827-831.
  • 3Blankley WF, Lewin RA. Temperature responses of a coccolithophorid, Cricosphaera carterae, measured in asimple and inexpensive thermal-gradient device. Limnol Oceanogr, 1976, 21 (3): 457-462.
  • 4Youdeowei A. The behaviour of a cotton stainer D.vsdercus intermedius (heteroptera, pyrrhocoridae) in a temperaturegradient and the effect of temperature on aggregation. Ent Exp Appl, 1968, 11(1): 68-80.
  • 5Clark HF, Kaminski F, Karzon DT. Thermoelectrically cooled temperature-gradient apparatus for comparativecell and virus temperature studies. Appl Microbiol, 1970, 19(5): 848-854.
  • 6Battley EH. A thermal-gradient block for the determination of temperature relationships in microorganisms. Antonie van Leeuwenhoek, 1964, 30(1): 81-96.
  • 7Siver PA. A new thermal gradient device for culturing algae. Br Phycol J, 1983, 18(2): 159-164.
  • 8Wolf R, Niemuth J, Sauer H. Thermotaxis and protoplasmic oscillations in Physarum plasmodia analysed in a novel device generating stable linear temperature gradients. Protoplasma, 1997, 197(1/2): 121-131.
  • 9Mao HB, Yang TL, Cremer PS. A microfluidic device with a linear temperature gradient for parallel andcombinatorial measurements. J Am Chem Soc, 2002, 124(16): 4432-4435.
  • 10Grodzicki P, Caputa M. Social versus individual behaviour: a comparative approach to thermal behaviour of the honeybee (Apis mellifera L.) and the Americancockroach (Periplaneta americana L.). J Insect Physiol, 2005, 51(3): 315-322.

二级参考文献7

共引文献3

同被引文献64

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部