期刊文献+

基于分块LBP的树种识别研究 被引量:10

Wood recognition based on block local binary pattern(LBP)
下载PDF
导出
摘要 本文基于获取便捷的木材体视图进行木材树种自动识别研究。首先对木材图像进行标准化预处理,然后采用分块LBP提取特征,分别使用欧式、卡方、衰减3种不同的距离进行分类,最后采用最近邻进行识别。讨论了木材图像特征分块方式对识别结果的影响,并比较了在不同距离下的识别效果。结果表明:采取不同的分块方式对最终的分类影响较大,其中沿着年轮线方向上的分块呈现下降趋势,而在垂直年轮线方向上进行适当的分块可以提高分类的识别率;采用卡方距离可以得到最好的识别率,最高可达93.3%,比欧式距离高出2.5%。 The automatic wood recognition is studied in this paper through wood stereogram for its convenient way to obtain. Firstly, a standardizing preprocess of wood images was carried out. Secondly, block local binary pattern (LBP) was selected to extract wood features and three different distances (European distance, Chi-square distance, and diffusion distance) were introduced to classification experiments. At last, we used nearest neighbor classifier to identify wood features, discussed effects of block LBP features on recognition results and compared recognition rates in different distances. Results show that different block ways have significant influence on the final classification, among which block along the tree ring direction shows downward trend and proper block will improve the recognition rates in the vertical direction of tree ring. Chi-square distance can obtain the best recognition rate, up to 93.3% , 2.5% higher than that of European distance.
出处 《北京林业大学学报》 CAS CSCD 北大核心 2011年第4期107-112,共6页 Journal of Beijing Forestry University
基金 国家自然科学基金项目(60970082) 浙江省自然科学基金项目(Y3090061 Y3080457) 浙江省科技厅科研项目(2008C21087) 浙江省大学生科技创新活动计划项目(2010R412019)
关键词 木材识别 LBP特征分块 木材体视图 wood recognition block LBP feature wood stereogram
  • 相关文献

参考文献11

  • 1祁亨年,陈丰农,方陆明,马灵飞.一种基于形态学的木材导管图像分割方法[J].北京林业大学学报,2008,30(4):12-16. 被引量:6
  • 2WANG H J, ZHANG G Q, QI H N, et al. Multi-objective optimization on pore segmentation [ C ] . Proceedings of the 5th international conference on natural computation. Tianjin: IEEE Computer Society, 2009:613-617.
  • 3任洪娥,王海丰,赵鹏.新的木材显微细胞图像分类识别方法[J].计算机工程与应用,2009,45(28):246-248. 被引量:5
  • 4I OJALA T, PIETIKAINEN M, HARWOOD D. A comparative study of texture measures with classification lmsed on fealure distributions [ J].Pattern Recognition, 1996,29 ( I ) : 5 l - 59.
  • 5OJALA T, PIETIK~INEN M, gray-scale and rotation invariant MAENPAA T. Muhiresolution texture classifieation with local binary patterns[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 ( 7 ) : 971-987.
  • 6AHONEN T, HADID A, PIETIKAINEN M. Face recognition with local binary patterns[ C ].TOMAS P, JIRf M. proceedings of the eighth european conference on computer vision. Prague: Springer, 2004:469-481.
  • 7毛秉毅.基于自适应LBP算法的纹理分析[J].计算机工程与应用,2007,43(2):89-90. 被引量:11
  • 8AIqONEN T, PIETIKA.INEN M. Face description binary patterns: application to face recognition [ J ]. on Pattern Analysis and Machine Intelligence, 2006,44(Z2): 2037-2041.
  • 9业宁,丁建文,王迪,王厚立,徐兆军.基于LBP特征提取的木材纹理缺陷检测[J].计算机研究与发展,2007,44(z2):383-387. 被引量:7
  • 10LING H B, OKADA K. Diffusion distance for histogram comparison [ C ]. IEEE computer society confierence on compuler vision and pattern recognition. New York: IEEE Conlpulcr Society, 2006:246-253.

二级参考文献29

共引文献24

同被引文献105

引证文献10

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部