期刊文献+

基于惯性微流原理的微流控芯片用于血浆分离 被引量:13

Separation of blood plasma by inertial focusing using microfluidic chips
原文传递
导出
摘要 血浆是临床生化检验中一类广泛使用的样品,从全血中分离血浆是生命医学研究领域中一项非常重要的技术.惯性微流(inertial microfluidics)原理的主要特点是无需施加任何外力如电磁力等,仅依靠液体流动就可以在微通道内实现一定尺寸的微粒或细胞的聚焦流动.本研究基于惯性微流原理,设计并制备了具有不对称弯管结构通道的微流控芯片.采用制备的荧光微球作为模型样品考察了装置的性能,发现尺寸越大的微球保持惯性聚集流动的流速范围也越大.在此基础上,利用发展的芯片平台成功实现从稀释的血液样品中将血浆分离.使用芯片对样品进行两次分离,即二级分离后,血液中血红细胞的分离效率超过90%.该装置具有结构简单、体积小巧、操作方便等特点,不仅可以快速分离血浆,而且对血细胞基本无损,易于作为功能模块与现有的一些芯片实验室(lab on a chip,LOC)系统集成结合. Blood plasma is widely used in clinical and biochemical tests, and techniques for plasma separation are essential for biomedical research. The technique of inertial microfluidics provides the capability to focus microparticles or cells in microchannels without the need for active device components. Based on the theory of inertial focusing, we designed and fabricated microfluidic chips with asymmetrically curved channels. Focusing performance was evaluated using homemade fluorescent microspheres as models. We found that the flow velocities required for maintenance of stable inertial focusing varied significantly among microspheres of different sizes. The microdevice was further employed for the separation of plasma from diluted blood samples. We achieved a 90% separation efficiency when the sample was separated twice in the device. These data suggest that microdevices can separate plasma efficiently without damaging blood cells, and can be readily integrated with other analytical devices.
出处 《科学通报》 EI CAS CSCD 北大核心 2011年第21期1711-1719,共9页 Chinese Science Bulletin
基金 国家自然科学基金(20775065 20835005) 教育部高校博士点基金(20070384023) 深圳市药用生物芯片重点实验室 深圳市双百计划资助项目
关键词 惯性微流 微流控芯片 血浆 分离 inertial focusing, microfluidics, plasma, separation
  • 相关文献

参考文献26

  • 1Toner M, Irimia D. Blood on a chip. Annu Rev Biomed Eng, 2005, 7:77-103.
  • 2Moorthy J, Beebe D J. In situ fabricated porous filters for microsystems. Lab Chip, 2003, 3:62-66.
  • 3Ji H M, Samper V, Chen Y, et al. Silicon-based microfilters for whole blood cell separation. Biomed Microdevices, 2008, 10:251-257.
  • 4Crowley T A, Pizziconi V. Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip, 2005, 5:922-929.
  • 5VanDelinder V, Groisman A. Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal Chem, 2006, 78:3765-3771.
  • 6Tachi T, Kaji N, Tokeshi M, et al. Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidic system. Anal Chem, 2009, 81:3194-3198.
  • 7Jaggi R D, Sandoz R, Effenhauser C S. Microfluidic depletion of red blood ceils from whole blood in high-aspect-ratio microchannels. Microfluid Nanofluid, 2007, 3:47-53.
  • 8Faivre M, Abkarian M, Bickraj K, et al. Geometrical focusing of cells in a microfluidic device: An approach to separate blood plasma. Biorheology, 2006, 43:147-159.
  • 9Yang S, Undar A, Zahn J D. Blood plasma separation in microfluidic channels using flow rate control. ASAIO J, 2005, 51:585-590.
  • 10Yang S, Undar A, Zahn J D. A microfluidic device for continuous, real time blood plasma separation. Lab Chip, 2006, 6:871-880.

同被引文献165

引证文献13

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部