期刊文献+

完备非紧流形上的热方程

Heat Equation on Complete Noncompact Manifolds
下载PDF
导出
摘要 研究了完备非紧有非负全纯双截曲率的Khler流形上的热方程,在一个较弱的条件下得到了它的正解的梯度估计和复Hessian估计. The heat equation on Khler manifolds with nonnegative and bounded bisectional curvature was studied.The gradient estimate of positive solutions and the complex Hessian estimate on it were obtained under a less condition.
作者 赵成兵
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第6期924-925,940,共3页 Journal of Tongji University:Natural Science
基金 国家自然科学基金资助项目(70731003) 安徽省高等学校自然科学基金资助项目(KJ2011A061) 安徽省自然科学基金资助项目(1104606M01)
关键词 热方程 梯度估计 Hessian估计 正解 heat equation gradient estimate Hessian estimate positive solutions.
  • 相关文献

参考文献6

  • 1Cheng S Y, Yau S T. Differential equations on Riemannian manifolds and their geometric applications[J]. Comm Pure Apple Math, 1975,28(3) :333.
  • 2Li P, Yau S T. On the parabolic kernel of the Schrodinger operator[J]. Acta Math, 1986,156(1) : 153.
  • 3Hamilton R S, A matrix Harnack estimate for the heat equation [J]. Comm Anal Geom, 1993,1 (1) : 113.
  • 4Souplet P,Zhang Q S. Sharp gradient estimate and Yau Liouville theorem for the heat equation on noncompact manifolds [J].Bulletin of the London Mathematical Society, 2006, 38 (6) : 1045.
  • 5Ni L, Tam L F. Liouville property of plurisubharmonic functions[R/ OL]. [2002 - 12 - 28]. http://arxiv, org/abs/math/0212363.
  • 6Ni L, Shi Y G, Tam L F. Poisson equation, poincare-Lelong equation and curvature decay on complete Kaihler manifolds [J]. J Diff Geom,2001,57(2) :339.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部