期刊文献+

基于奇异值分解的铅锌冶炼过程故障二次分离

Pb-Zn Smelting Process Fault Isolation Based on Singular Value Decomposition
下载PDF
导出
摘要 铅锌冶炼过程是非常复杂的反应工艺,工况变化较大,在线监控和故障诊断的难度很大。铅锌冶炼过程故障分离的目的是根据异常监控变量来判断故障类型,由于铅锌冶炼过程故障的特殊性,不同类型的故障可能导致相同的监控变量发生异常,采用传统的故障分离方法不能有效地判断故障类型。本文提出一种基于奇异值分解的故障二次分离的方法,通过进一步分析监控变量和故障类型的对应关系,解决故障分离不彻底的问题。试验结果证明了方法的有效性。 Because Pb-Zn smelting process is accompanied with fast changes and remarkable sophisticated characteristics, it is hard to on-line monitor it and diagnose its fault. The objective of fault isolation is to determine the fault types based on the abnormal surveillance variables. However the fault isolation can not be effectively carried out because of the specificity of Pb-Zn smelting process that different faults may cause the same surveillance variables to be abnormal. To solve this problem, singular value decomposition (SVD)-based 2-step fault isolation approach is proposed to achieve effective fault isolation in Pb-Zn smelting process by further .analyzing the relationships between fault types and abnormal variables. The feasibility of the proposed method is testified by experiments.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第B07期97-99,共3页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(60634020)资助项目
关键词 铅锌冶炼过程 故障分离 奇异值分解 Pb-Zn smelting process fault isolation singular value decomposition
  • 相关文献

参考文献7

  • 1DING S,ZHANG P,DING E,YIN S,Naik A,DENG P,GUI W.On the Application of PCA Technique to Fault Diagnosis[J].Tsinghua Science and Technology,2010,15(2):138-144. 被引量:34
  • 2邓鹏程,桂卫华,阳春华,唐勇波.铅锌冶炼过程的自适应故障检测[J].华中科技大学学报(自然科学版),2009,37(S1):107-109. 被引量:1
  • 3刘晓颖,桂卫华,朱爽.铅锌冶炼过程的故障诊断神经网络专家系统[J].上海海运学院学报,2001,22(3):89-91. 被引量:13
  • 4Deng P C,Gui W H,Xie Y F.Latent space trans-formation based on principal component analysis foradaptive fault detection. Control Theory&Appli-cations,IET . 2010
  • 5Jiang Shaohua,Gui Weihua,Yang Chunhua,et al.Method based on principal component analysis andsupport vector machine and its application to processmonitoring and fault diagnosis for lead-zinc smeltingfurnace. 27th Chinese Control Conference (CCC2008) . 2008
  • 6Chen Xiaofang,Gui Weihua,Wang Yalin,et al.Multi-step optimal control of complex process:a ge-netic programming strategy and its application. Engineering Applications of Artificial Intelligence . 2004
  • 7S. Joe Qin.Statistical process monitoring: basics and beyond. Journal of Chemometrics . 2003

二级参考文献20

  • 1唐朝晖,桂卫华,吴敏,杨帆,王海清.密闭鼓风炉铅锌熔炼的统计过程监测系统设计[J].计算机与应用化学,2007,24(2):155-158. 被引量:7
  • 2Jolliffe I T. Principal Component Analysis. New York, Berlin: Springer-Verlag, 1986.
  • 3Qin S J. Statistical process monitoring: Basics and beyond. Journal of Chemometrics, 2003, 17: 480-502.
  • 4Qin J. Data-driven fault detection and diagnosis for complex industrial processes. In: Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. Barcelona, Spain, 2009:1115-1125.
  • 5Venkatasubramanian V, Rengaswamy R, Kavuri S, et al. Review of process fault detection and diagnosis part Ⅲ: Quantitative model-based methods. Computers and Chemical Engineering, 2003, 27: 327-346.
  • 6Li W, Yue H, Valle-Cervantes S, et al. Recursive pca for adaptive process monitoring. Journal of Process Control, 2000, 10(5): 471-486.
  • 7Wang X, Kruger U, Irwin G W. Process monitoring approach using fast moving window PCA. Industrial & Engineering Chemistry Research, 2005, 44: 5691-5702.
  • 8Liu X, Kruger U, Littler T, et al. Moving window kernel PCA for adaptive monitoring of nonlinear processes. Chemometries and Intelligent Laboratory Systems, 2009, 96: 132-143.
  • 9Jackson J E, Mudholkar G S. Control procedures for residual associated with principal component analysis. Technometrics, 1979, 21: 341-349.
  • 10Basseville M, Nikiforov I. Detection of Abrupt Changes- Theory and Application. NJ, USA: Prentice-Hall, 1993.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部