期刊文献+

一种基于GA优化小波LS-SVR的实时寿命预测方法 被引量:2

Real-Time Lifetime Prediction Method Based on Wavelet LS-SVR Optimized by GA
下载PDF
导出
摘要 针对性能非线性退化的产品,从研究退化轨迹相似性的角度出发,提出一种基于遗传算法(GA)优化小波最小二乘支持向量回归机(LS-SVR)的实时退化轨迹建模和寿命预测方法。该方法根据特定个体与同类产品的Euclid距离确定隶属度权值,加权小波LS-SVR建立的同类产品退化模型得到特定个体的退化轨迹模型,结合实测数据更新模型并进行实时寿命预测。实例分析验证了所提方法的有效性。 Some products have nonlinear performance degradation paths. As for as the comparability of degradation paths is concerned, a real-time lifetime prediction method is proposed based on wavelet least square support vector regression (LS-SVR) which is optimized by genetic algorithm (GA). The Euclid distances of the specific individual and the same kind of products are used to determine the degree of membership. The specific individual degradation path model is built by the weighting models of same kind products. It is updated with real-time measurement. The proposed method is applied to fatigue crack growth data. Experimental results verify its validity.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第B07期203-206,共4页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家杰出青年科学基金(61025014)资助项目 国家自然科学基金重点(60736026)资助项目 国家自然科学基金面上(61074072)资助项目
关键词 实时寿命预测 性能退化 最小二乘支持向量回归机 小波核函数 遗传算法 real-time lifetime prediction performance degradation least square support vector regression (LS-SVR) wavelet kernel genetic algorithm (GA)
  • 相关文献

参考文献12

  • 1尤琦,赵宇,马小兵.产品性能可靠性评估的时序分析方法[J].北京航空航天大学学报,2009,35(5):644-648. 被引量:17
  • 2胡昌华,胡锦涛,张伟,平振海.支持向量机用于性能退化的可靠性评估[J].系统工程与电子技术,2009,31(5):1246-1249. 被引量:17
  • 3张莉,周伟达,焦李成.子波核函数网络[J].红外与毫米波学报,2001,20(3):223-227. 被引量:16
  • 4J.A.K. Suykens,J. Vandewalle.Least Squares Support Vector Machine Classifiers[J]. Neural Processing Letters . 1999 (3)
  • 5Si X S,Wang W,Hu C H,et al.Remaining usefullife estimation—a review on the statistical data driv-en approaches. European Journal of OperationalResearch . 2011
  • 6Vapnik VN.The Nature of Statistical Learning Theory. . 1995
  • 7Lu C,Meeker W.Using degradation measures to esti-mate a time-to-failure distribution. Technometrics . 1993
  • 8Gebraeel NZ,LAWLEY MA,LI R,et al.Residual-life distributions from component degradation signals:A Bayesian approach. IIE Transactions . 2005
  • 9Gebraeel N Z.Sensory-updated residual life distributionsfor components with exponential degradation patterns. IEEE Transactions on Automation Science andEngineering . 2006
  • 10Gebraeel N,Elwany A,Pan J.Residual life predictionsin the absence of prior degradation knowledge. IEEE Transactions on Reliability . 2009

二级参考文献21

  • 1邓爱民,陈循,张春华,汪亚顺.基于性能退化数据的可靠性评估[J].宇航学报,2006,27(3):546-552. 被引量:133
  • 2张艳,黄敏,赵宇,于丹.基于置信分布的系统可靠度评估蒙特卡罗方法[J].北京航空航天大学学报,2006,32(9):1023-1025. 被引量:9
  • 3Xu D, Zhao W B. Reliability prediction using multivariate degradation data[C]//RAMS, 2005: 337- 341.
  • 4Crk V. Reliability assessment from degradation data[C]//RAMS, 2000:155 - 161.
  • 5Lu C J, Meeker W Q. Using degradation measures to estimate a time-to-failure distribution [J]. Technometrics, 1993,35(2):161 - 174.
  • 6Eghbali G. Reliability estimate using accelerated degradation data[D]. The State University of New Jersey, 2001.
  • 7Whitmore G. Estimating degradation by a Winner diffusion process subject to measurement error[J]. Lifetime Data Analysis, 1995(1): 307-319.
  • 8Jiang M X, Zhang Y C. Dynamic modeling of degradation data[C]//RAMS, 2002: 607-611.
  • 9Padgett W J, Tomlinson M A. Inference from accelerated degra dation and failure data based on Gaussian process models[J].Lifetime Data Analysis, 2004(10) : 191 - 206.
  • 10Naghedolfeizi M, Arora S. Artificial neural network models for predicting degradation trends in system components and sensors[C]//Autotestcon, IEEE Systems Readiness Technology Conference Proceedings, 2003 : 647 - 651.

共引文献42

同被引文献22

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部