期刊文献+

基于高斯混合模型和变量重构组合法的故障诊断与分离 被引量:4

Fault Diagnosis and Isolation Based on Combination Gaussian Mixture Models and Variable Reconstruction
下载PDF
导出
摘要 提出了一种将变量重构与高斯混合模型结合的故障诊断与分离的方法。首先建立过程数据的高斯混合模型,解决了监控过程的测量数据不服从单峰的高斯分布所带来的问题,然后进行故障数据变量重构,估计未知参数并采用最大期望算法来估测均值与协方差矩阵。在此基础上建立统计模型进行故障的诊断与分离。与传统的贡献图分离故障的方法比较,通过田纳西-伊斯曼化工过程进行实验验证,本文提出的高斯混合模型与变量重构相结合对多状态过程进行故障的诊断与分离收到较好效果。 A fault diagnosis and isolation approach is presented combining variable reconstruction and Gaussian mixture models (GMMs). Firstly, GMMs for process data are built to overcome the problem that the operating data cannot follow a unimodal Gaussian distribution. Then the variable reconstruction, the estimation of unknown factors and its mean and covariance are completed, as well as the fault diagnosis and isdation. The combination methods are illustrated for a simulated Tennessee-Eastman chemical process (TE) tested for fault diagnosis and isolation and result is better than contribution plot.
作者 李元 孙健
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第B07期207-210,共4页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(60774070.61034006)资助项目 辽宁省教育厅科学研究基金(20060669.2004D041)资助项目
关键词 控制工程 故障诊断与分离 贡献图 变量重构 高斯混合模型 control engineering fault diagnosis and isolation contribution plot variable reconstruc tion Gaussian mixture model
  • 相关文献

参考文献13

  • 1Zhou Donghua,Li Gang,Qin S Joe.Total projec-tion to latent structures for process onitoring. American Institute of Chemical Engineers Journal . 2010
  • 2Dunia R,Qin S J,Edgar T F,et al.Sensor fault i-dentification and reconstruction using principal com-ponent analysis. . 1995
  • 3Yu Qin.Multimode process monitoring withbayesian inference-based finite gaussian mixturemodels. American Institute of Chemical Engineers Journal . 2008
  • 4Yue H,Qin S J.Reconstruction based fault identifi-cation using a combined index. Ind Eng ChemRes . 2001
  • 5Zivkovic Z,Van der Heijden F.Recursive unsuper-vised learning of finite mixture models. IEEETrans Pattern Anal Mach Intell . 2004
  • 6Dunia R,Qin SJ.Joint diagnos is of process and sensor faults using principle component analysis. Control Engineering . 1998
  • 7MCAVOY T J,YE N.Base control for the Tennessee Eastman problem. Computers and Chemistry . 1994
  • 8Wang J,Qin S J.A new subspace identification approach based on principal component analysis. Journal of Process Control . 2002
  • 9Li G,Qin S.Joe,,Zhou DH.Geometric properties of partial leastsquares for process monitoring. Automatica . 2010
  • 10Qin S J,Dunia R.Determing the number of principle components for best reconstruction. Proc IFAC DYCOPS’98 . 1998

同被引文献40

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部