期刊文献+

基于JIT-RVC算法的软测量的研究及其应用 被引量:1

JIT-Based soft sensors research and its alppication
原文传递
导出
摘要 针对传统JIT(Just-in-time)算法单纯以距离为数据选择的缺陷,以及局部模型鲁棒性差,稳定性不强的特点,文中一方面提出了与Jolliffe参数相结合的鲁棒最近相关算法,使得JIT算法能够在离群点出现的情况下正确的选择建模数据,另一方面,还将合成随机变系数概率模型算法(Ensemble RVC)作为JIT算法的局部模型构成了JIT-RVC算法,于此强化了传统JIT算法的非线性逼近能力和鲁棒性。最后,通过强烈干扰情况下的污水生化处理的BOD_5软测量预测仿真结果证明了算法的有效性,特别要指出的是相较于JIT-PLS算法,JIT-RVC算法的RMSE指标减少了55%,而相关系数提高了53%。 In order to address the problem of distarnce-based data selection method as well as the unrobustness and unreliability of local model in JIT algorithm, this paper proposed a robust nearest correlation algorithm by integrating correlation data selection method with Jolliffe parameters. This improvement makes the JIT algorithm best for data selection and insensitive to outliers. On the other hand, ensemble Randomly Varying Coefficient (RVC) model is incorporated into JIT algorithm as local model and then JIT-RVC algorithm is presented. By doing so, the nonlinearity ability and robustness ,3f the JIT algorithm are enhanced. The effectiveness of the algorithm is validated under intensive disturbance in BOD5 soft sensor predictio:a. Another point should be mentioned is that even if suffering from some outliers, the results show that RMSE and coefficient (r) are still improved by about 55% and 53% in comparison with convention JIT-PLS.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2011年第7期811-815,共5页 Computers and Applied Chemistry
基金 国家自然科学基金项目(60704012) 华南理工大学中央高校基本科研业务费(2009ZM0161)
关键词 鲁棒最近相关算法 即时 合成随机变系数概率模型 污水生化处理 5天生物需氧量 Robust nearest correlation algorithm, JIT, RVC, Wastewater treatment, BOD5
  • 相关文献

参考文献18

  • 1Bontempi G, Birattari M, Bersini H. Lazy learning for local modeling and control design. Int J Cont, 1999, 72(6):643-658.
  • 2Atkeson-C G, Moore A W, et al. Locally weighted learning. Artif Intelli Rev, 1997, 11(2):11-73.
  • 3Stanfill C, Waltz D. Toward memory-based reasoning. Commun ACM, 1986, 29(1):1213-1228.
  • 4Stenman A, Gustafsson F and Ljung L. Just in time models for dynamical systems Proceedings of 35th IEEE Conference of Decision and Control, 1996:1115-1120.
  • 5Kaneko N, Sakamoto S, et al. In Prediction of blast furnace operation using on-line bayesian learning. Control, Automation and Systems, 2008:2240-2245.
  • 6Fujiwara K, Kano M and Hasebe S. Development of correlation- based pattern recognition and its application to adaptive soft-sensor design. ICROS-SISE International Joint Conference. 2009:1990-1995.
  • 7Cheng C, Chiu M S. Nonlinear process monitoring using JITL- PCA. Chemometrics and Intelligent Laboratory Systems, 2005, 76(1):1-13.
  • 8Cheng C, Chiu M S. A new data-based methodology for nonlinear process modeling. Chemical Engineering Science, 2004, 59(13):2801-2810.
  • 9Fujiwara K, Kano M, et al correlation-based just-in-time 55(7): 1754-1765.
  • 10Soft sensor development using modeling. AIChE Journal, 2009.

同被引文献18

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部