期刊文献+

基于观测器的一类输出耦合网络参数辨识

Observer-based approach of parameter identification for a class of output-coupling complex dynamical networks
下载PDF
导出
摘要 诸多复杂网络控制方法一般都是在网络节点动力学的参数已知的前提下提出的。然而实际工程中,由于节点系统的复杂性,它的某些参数难以测量或者确定,参数辨识问题一直是系统控制和同步领域中的重要课题。本文针对一类输出耦合复杂动态网络模型,提出一种基于观测器的网络节点未知参数辨识方法。基于网络外部同步思想构造响应网络,利用网络中可测的节点输出变量设计自适应控制器。根据Lyapunov稳定性定理推导出控制器所需条件,进而辨识出节点参数。最后,通过仿真验证本文方法的有效性。 Many methods of control theory and synchronization for complex networks are on the condition of known node's parameters.However,in practical engineering,some parameters of node are uncertain or difficult to measure because of complexity of the node system.So parameters identification is a challenging issue in the field of control and synchronization of complex dynamical networks.Based on state observer theory,an approach of parameters identification for a class of output-coupling complex dynamical networks is proposed in this paper.We construct a responsible network according to network outer synchronization.The node's output variable can be measured easily,which is used to design the adaptive controller.Based on the Lyapunov stability theorem,some conditions are derived to design the controller.The proposed approach can be applied to identify the unknown parameters.Finally,numerical simulations are given to verify the effectiveness of the proposed approach.
出处 《电子测试》 2011年第6期22-25,共4页 Electronic Test
关键词 复杂动态网络 输出耦合 参数辨识 李雅普诺夫稳定性 complex dynamical networks output-coupling parameter identification Lyapunov stability theory
  • 相关文献

参考文献11

  • 1Strogatz S H. Exploring complex networks[J]. Nature, 2001, 410(6825): 268-276.
  • 2Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5493): 509-512.
  • 3Liu H, Lu J A, L ti J H. Topology identification of an uncertain general complex dynamical network[C]. Seattle, America: IEEE International Symposium on Circuits and Systems, 2008:109-112.
  • 4Liu H, Lu J A, L ti J H. Identification in general complex delayed dynamical networks[C]. Kunming, China: Control Conference 27th Chinese, 2008:419-423.
  • 5Feng X, Liang L K, Parameters identification of chaotic systems with time delay coupling[C]. Dalian, China: Signal processing systems(ICSPS), 2010:562-565.
  • 6Lu J Q, Cao J D, Synchronization-based approach for parameters identification in delayed chaotic neural . networks[J], Physica A, 2007, 382 (2):672 - 682.
  • 7Xu Y H, Zhou W N, Fang J A, et al. Topology identification and adaptive synchronization of uncertain complex networks with non-derivative and derivative coupling[J]. Journal of the Franklin Institute-engineering and Applied Mathematics, 2010, 347(8): 1566-1576.
  • 8Vassiliadis D. Parametric adaptive control and parameter identification of low-dimensional chaotic systems[J]. Physica D: Nonlinear Phenomena, 1994, 71(3):319-341.
  • 9关新平,彭海朋,李丽香,王益群.Lorenz混沌系统的参数辨识与控制[J].物理学报,2001,50(1):26-29. 被引量:76
  • 10Jiang G P, TANG K S, CHEN G R, A state-observer- based approach for synchronization in complex dynamical networks[J]. IEEE Transactions on Circuits and Systems I, Regular Papers, 2006, 53(12): 2739-2745.

二级参考文献3

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部