期刊文献+

基于OpenCV的视频图像序列的运动目标检测 被引量:4

Moving objects detection of video image based on OpenCV
下载PDF
导出
摘要 随着人工智能的发展,提出了使计算机系统具有模拟人类通过视觉接收外界信息、识别和理解周围环境、协助或代替人类感知的能力,基于视频序列的运动目标分析也就应运而生。本文针对目前常用的背景减法,帧间差分法和混合高斯背景建模的运动检测方法的优缺点,提出了一种3者相结合的运动目标检测算法。在讨论数学模型的基础上,通过OpenCV进行了实现,并对传统算法进行了简要介绍。实验结果表明该算法具有很好的检测效果和鲁棒性。 With the development of artificial intelligence, people begin to proposed to have computer system have capability of simulate human vision to accept the outside information, identify and understand the surrounding environment, to assist or replace human perception, analysis of video sequences of moving objects is emerged. In this paper, a new motion detection algorithm which combined commonly used background subtraction, frame difference and the Gaussian mixture model is proposed. Mathematic model is realized by OpenCV, traditional algorithm is briefly introduced. Experimental results show good detection performance and robustness.
出处 《电子测试》 2011年第7期27-29,33,共4页 Electronic Test
关键词 背景模型 背景减法 帧间差分 OPENCV background modeling background subtraction frame difference OpenCV
  • 相关文献

参考文献4

  • 1Elgammal A, Harwood D, Davis L.Non-parametric Model for Background Subtraction[C].European Conference of Computer Vision, Dublin, April 18, 2000, 1843 : 751-767.
  • 2Li Y L, Huang W M, Irene Y H, et al. Statistical Modeling of Complex Backgrounds for ForegroundObject Detection[J].IEEE Transactions on image processing(S1057-7149), 2004, 13(11) : 1459- 1472.
  • 3陈振华,周锐锐,李光伟,毕笃彦.一种改进的高斯混合背景模型算法及仿真[J].计算机仿真,2007,24(11):190-193. 被引量:16
  • 4刘瑞祯,于仕琪.OpenCV教程[M].北京:北京航空航天大学出版社,2007.

二级参考文献7

  • 1曹丽,汪亚明,周维达,黄文清.基于动态图像序列的运动目标检测与跟踪[J].计算机仿真,2006,23(5):194-196. 被引量:7
  • 2C R Wern, A Azarbayejani, T Darrell and A P Pentland. Pfinder: Real-time tracking of the human body[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785.
  • 3M Piccardi. Background subtraction techniques:a review [C].IEEE International Conference on Systems, Man and Cybernetics,Oct.2004,4:3099-3104,10-13.
  • 4Rita Cucchiara, Costantino Grana, Massimo Piccardi, Andrea Prati, Detecting Moving Objects, Ghosts and Shadows in Video Streams [J].IEEE Transaction on Pattern Analysis and Machine Intelligence, 2003,25(10):1337-1342.
  • 5Ahmed Elgammal, David Harwood, Larry Davis. Non-parametric Model for Background Subtraction [C].6th European Conference on Computer Vision, Dublin,2000.
  • 6C Stauffer and W Grimson. Adaptive background mixture models for real-time tracking [C].In Proceedings CVPR, 1999,246-252.
  • 7A Mittal and N Paragios. Motion-Based Background Subtraction using Adaptive Kernel Density Estimation [M] CVPR, Washington, DC, 2004,302-309.

共引文献53

同被引文献24

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部