期刊文献+

单变元多项式方程的高效区间牛顿算法

An Efficient Interval Newton Algorithm for Univariate Polynomial Equation
下载PDF
导出
摘要 为了解决当前存在的区间运算复杂性高、普通区间迭代程序运算量大、花费机器时间长等问题,提高区间迭代的运算效率,针对单变元多项式方程的求解展示了一个高效的区间Newton迭代算法。该算法利用1维问题多维化的思想加快迭代的收敛速度,改进了多维化过程中出现的性能拖累,极大地提高了算法在实际应用中的执行效率。算法已经被实现为M ap le程序,实验数据表明,与现有的算法相比,这个算法的迭代次数和运行时间都大幅减少,充分显示了它的高效性。 An efficient interval Newton algorithm for univariate polynomial equation was proposed.This algorithm reduced greatly the number of iterations and computations based on Hansen's method for univariate polynomial equation.The algorithm was implemented as a Maple program.Compared with the existing algorithm,this algorithm was dramatically fast in some cases.A large number of polynomials generated randomly by Maple were tested and the performance was reported.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2011年第4期131-134,共4页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(10771205) 2010年度河南省基础与前沿技术研究资助项目(102300410211) 2009河南省高等学校青年骨干教师资助项目(2009GGJS-105)
关键词 区间算术 牛顿迭代 零点 单变元多项式方程 Maple程序 interval arithmetic Newton iteration root univariate polynomial equation Maple procedure
  • 相关文献

参考文献14

  • 1Moore R E. Interval analysis [ M ]. Englewood Cliffs, New Jersey : Prentice-Hall, 1966.
  • 2王德人,张连生,邓乃扬.非线性方程的区间算法[M].上海:上海科学技术出版社,1986.
  • 3Alefeld A G, Herzberger J. Introduction to interval computa-tions [ M ]. New York : Academic Press, 1983.
  • 4Hickey T,Ju Q, Van Emden M H. Interval arithmetic:From principles to implementation [ J]. Journal of the ACM (JACM) ,2001,48 (5) : 1038 -1068.
  • 5杨路,夏壁灿.不等式机器证明与自动发现[M].北京:科学出版社,2007.
  • 6Gavriliu M. Towards more efficient interval analysis:corner forms and a remainder interval Newton method[ D]. Califor-nia Institute of Technology, CA, USA ,2005.
  • 7Kramer W, Geulig I. Interval calculus in maple:The exten-sion intpakX to the package intpak of the share-library [ D ]. University of Wuppertal, Germany ,2001.
  • 8Grimmer M. Interval arithmetic in Maple with intpakX [ C]//PAMM. 2003,2( 1 ) :442 -443.
  • 9Zhang Jing, Li Yaohui. Finding real solutions of nonlinear al-gebraic equations based on symbolic-numeric methods[ J]. Jof SouthemYangtze University ,2007,6 ( 2 ) : 144 -149.
  • 10Li Yaohui, XueJiwei, Feng Yong. Solving nonlinear systems via preprocessing and interval method [ J ]. Journal of Si- chuang University : Engineering Science Edition, 2004, 36(5) :86 -93.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部