期刊文献+

计算机处理睡眠数据中2导脑电和1导眼电的非周期波形分析

Computer processing sleep data of two-channel electroencephalogram and one-channel electrooculogram by aperiodic waveform analysis
下载PDF
导出
摘要 背景:睡眠中记录的数据量很大,不用计算机自动处理不能满足实用需要,而现有的对睡眠数据进行分期的方法准确率都不高。目的:考察仅依据脑电与眼电,基于非周期波形分析和径向基函数遗传神经网络的睡眠数据分期新方法。方法:实验数据来自MIT的Physio Bank中的S1eep-EDF数据库,共8名被试,各记录2导脑电和1导眼电。原始数据经零相位数字滤波后,进行非周期波形分析,得出每个Epoch的特征向量,经预处理后送遗传径向基函数。神经网络配合专家手工分类结果进行训练,训练好的神经网络再对测试数据进行分析。结果与结论:总的分期符合率为95.6%,超出已知文献研究结果(70%~90%),具有很高的实用价值,能满足睡眠研究与临床使用。 BACKGROUND:The sleep data are very large,and it is not satisfied with practice demand if the data cannot process by computer.However,the methods which are using at present have a disadvantage that the accuracy is comparatively low.OBJECTIVE:To investigate a new method for sleep stage classification only using electroencephalogram(EEG) and electrooculogram(EOG) based on aperiodic waveform analysis and genetic neural network of radial basis function(RBF).METHODS:Raw data including two-channel EEG and one-channel EOG recorded from eight subjects were obtained from Sleep-EDF database of PhysioBank,MIT.After digital filter with zero phase,raw data were analyzed by aperiodic waveform analysis to extract several parameters that were necessary for sleep stage classification.Then,preprocessed data as input for genetic neural network of RBF accepted training.Finally,test data were sent to trained neural network to validate.RESULTS AND CONCLUSION:The results obtained,on average 95.6% of agreement between the expert and the GA-ANN fo six stages of vigilance,going beyond results of known literature(70%-90%),which possess high value in practice and maybe satisfy with research and clinical application.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2011年第26期4845-4849,共5页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 湖南省教育厅研究项目(09C245 09A018)~~
  • 相关文献

参考文献20

  • 1Rechtschaffen A, Kales A. A Manual of standardized terminology techniques and scoring system for sleep stages of human subjects. Washington D C: Government Printing Office, Public Health Service.1968: 3-7.
  • 2Aaron L. Sleep versus wake classification from heart rate variability using computational intelligence: consideration of rejection in classification models. IEEE Transactions on Biomedical Enaineerina.2008;55(1 ):108-118.
  • 3刘慧,和卫星,陈晓平.睡眠脑电的非线性动力学方法[J].江苏大学学报(自然科学版),2005,26(2):174-177. 被引量:19
  • 4和卫星,陈晓平,邵珺婷.基于样本熵的睡眠脑电分期[J].江苏大学学报(自然科学版),2009,30(5):501-504. 被引量:26
  • 5肖余粮,和卫星,陈晓平,吉奕,吴秋明.小波变换和小波熵在睡眠脑电信号变化特性研究中的应用价值[J].中国临床康复,2006,10(25):118-120. 被引量:11
  • 6Chen Weiting, Wang Zhizhong, Xie Hongbo, et al. Characterization of surface EMG signal based on fuzzy entropy. IEEE Transactions on Neural Systems and Rehabilitation Engineering.2007; 15(2): 267-272.
  • 7Pedro P, Pavel G, Leticia A. Sleep stage classification using fuzzy sets and machine learning techniques.Neurocomputing.2004;58: 1137-1143.
  • 8Ventours EM, Monoyiou EA, Ktonas PY, et al. Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: a feasibility study[J]. Comput Methods Programs Biomed.2005;78(3): 191-207.
  • 9Goldberger AL, Amaral L, Glass L, et al. PhysioBank, PhysioToolkit and PhysioNet: Component of a new research resource for complex physiologic signals. Circulation. 2000;101 (23): 215-220.
  • 10李治,汪曣,刘凤军,周鹏,王明时.入睡脑电信号的去噪[J].中国组织工程研究与临床康复,2007,11(13):2531-2533. 被引量:8

二级参考文献134

共引文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部