期刊文献+

Rotating properties of Bragg reflections and spatial lattice solitons in rotating photonic lattices

Rotating properties of Bragg reflections and spatial lattice solitons in rotating photonic lattices
原文传递
导出
摘要 We demonstrate the rotating properties of Bragg reflections and spatial lattice solitons in rotating photonic lattices by analyzing the linear and nonlinear propagations of light. It reveals that the Bragg reflection of the light waves rotates synchronously with the lattices, leading to the rotation of the Bloch waves during propagations. In the presence of nonlinearity, rotating lattice solitons from different transmission bands can propagate in a relatively stable manner. However, reduced-symmetry solitons at point X2 cannot easily rotate synchronously with the lattice, owing to Coriolis forces. Moreover, additional angular momenta are added to the off-axis propagating solitons. We demonstrate the rotating properties of Bragg reflections and spatial lattice solitons in rotating photonic lattices by analyzing the linear and nonlinear propagations of light. It reveals that the Bragg reflection of the light waves rotates synchronously with the lattices, leading to the rotation of the Bloch waves during propagations. In the presence of nonlinearity, rotating lattice solitons from different transmission bands can propagate in a relatively stable manner. However, reduced-symmetry solitons at point X2 cannot easily rotate synchronously with the lattice, owing to Coriolis forces. Moreover, additional angular momenta are added to the off-axis propagating solitons.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2011年第7期25-28,共4页 中国光学快报(英文版)
基金 supported by the Northwestern Polytechnical University Foundation for Fundamental Research (No. JC200950) the Doctorate Foundation of Northwestern Polytechnical University (No. CX200914)
关键词 Laser optics Light reflection PHOTONICS SOLITONS Laser optics Light reflection Photonics Solitons
  • 相关文献

参考文献23

  • 1D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424~ 817 (2003).
  • 2K. Zhou, Z. Guo, and S. Liu, Chin. Opt. Lett. 8, 791 (2010).
  • 3S. Liu, P. Zhang, X. Gan, F. Xiao, and J. Zhao, Appl. Phys. B 99, 727 (2010).
  • 4T. Pertsch, T. Zentgraf, U. Peschel, A. Br~er, and F. Lederer, Phys. Rev. Lett. 88, 093901 (2002).
  • 5C. R. Rosberg, D. N. Neshev, A. A. Sukhorukov, Y. S. Kivshar, and W. Krolikowski, Opt. Lett. 30, 2293 (2005).
  • 6P. Zhang, C. Lou, S. Liu, J. Zhao, J. Xu, and Z. Chen, Opt. Lett. 35, 892 (2010).
  • 7D. Trgger, R. Fischer, D. N. Neshev, A. A. Sukhorukov, C. Denz, W. Kr61ikowski, and Y. S. Kivshar, Opt. Ex- press 14, 1913 (2006).
  • 8D. Mandelik, I~. S. Eisenberg, and Y. Silberberg, Phy. Rev. Lett. 90, 053902 (2003).
  • 9A. A. Sukhorukov, D. Neshev, W. Krolikowski, and Y. S. Kivshar, Phy. Rev. Lett. 92, 093901 (2004).
  • 10D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13~ 794 (1988).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部