期刊文献+

Ultra-broad near-infrared emission of Bi-doped SiO_2 Al_2O_3 GeO_2 optical fibers

Ultra-broad near-infrared emission of Bi-doped SiO_2 Al_2O_3 GeO_2 optical fibers
原文传递
导出
摘要 Bi-doped SiO2-Al2O3-GeO2 fiber preforms are prepared by modified chemical vapor deposition (MCVD) and solution doping process. The characteristic spectra of the preforms and fibers are experimentally investigated, and a distinct difference in emission between the two is observed. Under 808-nm excitation, an ultra-broad near-infrared (NIR) emission with full-width at half-maximum (FWHM) of 495 nm is observed in the Bi-doped fiber. This observation, to our knowledge, is the first in this field. The NIR emission consists of two bands, which may be ascribed to the Bi0 and Bi+ species, respectively. This Bi-doDed fiber is promising for broadband or)tical amolification and widely tunable laser. Bi-doped SiO2-Al2O3-GeO2 fiber preforms are prepared by modified chemical vapor deposition (MCVD) and solution doping process. The characteristic spectra of the preforms and fibers are experimentally investigated, and a distinct difference in emission between the two is observed. Under 808-nm excitation, an ultra-broad near-infrared (NIR) emission with full-width at half-maximum (FWHM) of 495 nm is observed in the Bi-doped fiber. This observation, to our knowledge, is the first in this field. The NIR emission consists of two bands, which may be ascribed to the Bi0 and Bi+ species, respectively. This Bi-doDed fiber is promising for broadband or)tical amolification and widely tunable laser.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2011年第7期65-68,共4页 中国光学快报(英文版)
关键词 Broadband amplifiers Chemical vapor deposition Fibers Germanium oxides Infrared devices LASERS Optical fibers Preforming Silicon compounds Broadband amplifiers Chemical vapor deposition Fibers Germanium oxides Infrared devices Lasers Optical fibers Preforming Silicon compounds
  • 相关文献

参考文献36

  • 1Y. Fujimoto and M. Nakatsuka, Jpn. J. Appl. Phys. 40, L279 (2001).
  • 2Y. Fujimoto and M. Nakatsuka, Appl. Phys. Lett. 82, 3325 (2003).
  • 3M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, Opt. Lett. 29, 1998 (2004).
  • 4M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, Chem. Phys. Lett. 403, 410 (2005).
  • 5X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, Opt. Express 13, 1628 (2005).
  • 6B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, Appl. Phys. B 87, 135 (2007).
  • 7B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sver- chkov, and E. Dianov, Appl. Phys. B 95, 801 (2009).
  • 8Q. Qian, Q. Zhang, G. Yang, Z. Yang, and Z. Jiang, J. Appl. Phys. 104, 043518 (2008).
  • 9J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, Solid State Commun. 140~ 38 (2006).
  • 10M. Peng, J. Qiu, D. Chert, X. Meng, and C. Zhu, Opt. Lett. 30, 2433 (2005).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部