摘要
研究了齐次Neumann边界条件下具有收获率的Holling Ⅲ型捕食-食饵模型的平衡态问题。首先用最大值原理和Harnack不等式给出了正解的先验估计。其次在先验估计的基础上用能量方法得到了该模型非常数正解的不存在性。最后给出了该模型非常数正解存在的充分条件,并用度理论的知识给予证明。
The steady-states of Holling Ⅲ model with constant harvesting of prey and predators subject to homogeneous Neumann boundary condition are considered.First,a priori estimates for positive solutions are established by using the maximum principle and Harnack inequality.Second,the non-existence of non-constant positive steady-states are given based on the priori estimates,in which energy method are used.Finally,some results of the sufficient conditions for non-constant positive steady-states are obtained by applying Leray-Schauder degree theory
出处
《科学技术与工程》
2011年第20期4674-4678,4683,共6页
Science Technology and Engineering
基金
国家自然科学基金(10971124)
教育部高等学校博士点专项基金(200807180004)资助