期刊文献+

THE RECURSION OPERATOR FOR A CONSTRAINED CKP HIERARCHY 被引量:2

THE RECURSION OPERATOR FOR A CONSTRAINED CKP HIERARCHY
下载PDF
导出
摘要 This paper gives a recursion operator for a 1-constrained CKP hierarchy, and by the recursion operator it proves that the 1-constrained CKP hierarchy can be reduced to the mKdV hierarchy under condition q = r. This paper gives a recursion operator for a 1-constrained CKP hierarchy, and by the recursion operator it proves that the 1-constrained CKP hierarchy can be reduced to the mKdV hierarchy under condition q = r.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2011年第4期1295-1302,共8页 数学物理学报(B辑英文版)
基金 NSFC (10671187 10971109) the Program for NCET (NECT-08-0515)
关键词 recursion operator constrained CKP hierarchy mKdV hierarchy recursion operator constrained CKP hierarchy mKdV hierarchy
  • 相关文献

参考文献27

  • 1Fokas A S, Santini P M. The recursion operator of the Kadomtsev-Petviashvili equation and the squared eigenfunctions of the SchrSdinger operator. Stud Appl Math, 1986, 75:179-185.
  • 2Fokas A S, Santini P M. Recursion operators and bi-Hamiltonian structures in multidimensions II. Commun Math Phys, 1988, 116:449-474.
  • 3Matsukidaira J, Satsuma J, Strampp W. Conserved quantities and symmetries of KP hierarchy. J Math Phys, 1990, 31:1426-1434.
  • 4Fchssteiner B, Fokas A S. Symplectic structures, their Backlund transformation and hereditary symme- tries. Phys D, 1981, 4:47-66.
  • 5Olver P J. Applications of Lie Groups to Differential Equations. New York: Springer-Verlag, 1986.
  • 6Santini P M, Fokas A S. Recursion operators and bi-Hamiltonian structures in multidimensions I. Commun Math Phys, 1988, 115:375-419.
  • 7Strampp W, Oevel W. Recursion operators and Hamitonian structures in Sato theory. Lett Math Phys, 1990, 20:195-210.
  • 8Stephen C A. Bi-Hamiltonian operators, integrable flows of curves using moving frames and geometric map equations. J Phys A: Math Gen, 2006, 39:2043-2072.
  • 9Cheng Y. Constraints of the Kadomtsev-Petviashvili hierarchy. J Math Phys, 1992, 33:3774 3782.
  • 10Loris I. Recursion operator for a constraint BKP system//Boiti M, Martina L, et al, eds. Proceedings of the Workshop on Nonlinearity, Integrability and All That Twenty years After NEEDS'79. Singapore: World Scientific, 1999:325-330.

同被引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部