期刊文献+

图书流通关联规则分析 被引量:8

Analysis of Association Rules in Book Circulation
下载PDF
导出
摘要 关联规则是数据挖掘领域一个重要的研究任务。文章首先介绍关联规则的基本概念和常用的关联规则算法。接着以上海交通大学两年的图书流通数据为研究对象,利用关联规则和Apriori算法,分别对图书的类别和特定图书的借阅关联性做出分析,得出图书大类和一些单本图书的借阅关联性特点,最后在此基础上为图书馆工作和个性化服务提出合理建议。 Association rule is an important research task in data mining filed.This article firstly introduces the basic meaning and the main method of association rule.Then it takes the circulation data of Shanghai Jiao Tong University's Library as an example,by using association rule and Apriori algorithm,it makes deeply analysis of associations in book categories and certain books,finds out a strong correlation of all kinds of books.On the basis of previous work it conducts some reasonable suggestions for the library's work and personalized service.
作者 何欢
出处 《图书馆杂志》 CSSCI 北大核心 2011年第7期63-68,共6页 Library Journal
关键词 关联规则 图书馆 APRIORI算法 Association rule Library Apriori algorithm
  • 相关文献

参考文献5

二级参考文献24

  • 1栾丽华,吉根林.决策树分类技术研究[J].计算机工程,2004,30(9):94-96. 被引量:116
  • 2陶灵姣,孙继银,李智,郭文普.远程教育考试成绩分析决策树的构造方法[J].计算机工程与设计,2006,27(6):976-978. 被引量:11
  • 3Mallach Efrem G.决策支持与数据仓库系统[M].北京:电子工业出版社,2001,(2).
  • 4Brin, S., Motwani, R., and Silvemtein, C. (1997a). Beyond Market Baskets: Generalizing Association Rules to Correlations. In Proceedings of the ACM SIGMOD International Conference on Management of Data (ACM SIGMOD 97), Pages 265-276.
  • 5Brin, S., Motwani, R., Ullman, J. D., and Tsur, S. (1997b). Dynamic Itemset Counting and Implication Rules for Market Basket Data. In Proceedings of the ACM SIGMOD International Conference on Management of Data (ACM SIGMOD 97), Pages 265-276.
  • 6English, L P. (1999). Improving Data Warehouse and Business Information Quality: Methods for Reducing Costs and Increasing profits. John Wiley & Sons, New York, USA.
  • 7Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communications of the ACM, 39(11):27-34.
  • 8Gersten, W., Wirth, R., and Arndt, D. (2000). Predictive Modeling in Automotive Direct Marketing: Tools, Experiences and Open Issues. In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 00), Pages 398-406, Boston, MA USA.
  • 9Han, J., Pei, J., and Yin, Y. (2000). Mining Frequent Patterns without Candidate Generation. In Pmceedings of the 2000 ACM-SIGMOD International Confenerence on Management of Data, Dallas, Texas, USA.
  • 10Handley, S., Langley, P., and Rauscher, F. A. (1998). Learn ing to Predict the Duration of an Automobile Trip. In Proceedings of 1998 International Conference on KDD and Data Mining (KDD98), Pages 219-223, New York City, USA.

共引文献110

同被引文献41

引证文献8

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部