期刊文献+

粗晶Mg-Gd-Y-Zr热轧板材高速超塑性变形中的微观结构与织构演变(英文) 被引量:2

Microstructure and texture evolution during high-strain-rate superplastic deformation of coarse-grained Mg-Gd-Y-Zr rolled sheet
下载PDF
导出
摘要 研究Mg-Gd-Y-Zr热轧板高速超塑性变形过程中的微观结构与织构演变。在应变速率0.01s-1、变形温度400-500℃的条件下,高温拉伸获得伸长率为180%-266%。变形后的微观结构采用光学显微镜、扫描电子显微镜及透射电子显微镜进行表征;变形后的晶体取向信息采用宏观织构测试分析获得。研究结果表明:高速超塑性是通过动态再结晶协调下的第一类位错蠕变来实现的。合金变形前在435℃预热600s后,观察到了孪晶诱发的再结晶现象;当变形量为80%时,初始的晶粒细化导致均匀的动态再结晶组织。动态再结晶与动态析出的交互作用使得较细的晶粒与较高密度的第二相粒子相伴存在;尽管发生动态再结晶,宏观织构的演变依然表现出基面滑移与柱面滑移导致的晶体转动特征。 Microstructure and texture evolution during high-strain-rate superplastic deformation of the rolled Mg-Gd-Y-Zr sheet were investigated.The tensile tests at the strain rate of 0.01 s-1 achieved the elongations of 180%-266% in the deformation temperature range of 400-500 ℃.Post-deforming microstructures were characterized by optical microscopy,scanning electron microscopy and transmission electron microscopy,while crystallographic orientation information was obtained from macro-texture analysis.The results show that the high strain-rate superplasticity was attributed to class-I dislocation creep accommodated by dynamic recrystallization (DRX).During preheating at 435 ℃ for 600 s,twinning-induced recrystallization occurred.The initial strain of 80% made original grains fragmented and produced homogenous DRX grains.The interaction between dynamic recrystallization and dynamic precipitation yielded out such a phenomenon that finer DRX grains were often accompanied by denser particles.The macro-texture evolution exhibited some characteristics of the crystal rotation arising from basal slip and prismatic slip despite the occurrence of DRX.
作者 李理 张新明
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1491-1497,共7页 中国有色金属学报(英文版)
基金 Project supported by Natural Science Foundation of Hunan Province,China
关键词 MG-GD-Y-ZR合金 热轧 超塑性机制 第二相 织构 Mg-Gd-Y-Zr alloy hot rolling superplastic mechanism second phases texture
  • 相关文献

参考文献2

二级参考文献15

  • 1Ion S E, Humphreys F J. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium[J]. Acta Mater, 1982, 30: 1909-1919.
  • 2Klimanek P, P(o)tzsch A. Microstructure evolution under compression plastic deformation of magnesium at different temperature and strain rates[J]. Mater Sci Eng A, 2002, 324: 145- 150.
  • 3Myshlyaev M M, McQueen H J, Mwembela A, et al.Twining, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy[J]. Mater Sci Eng A, 2002,337:121 - 133.
  • 4Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-gained AZ31B magnesium[J]. Acta Mater, 2003, 51: 2055-2065.
  • 5Yang X Y, Miura H, Sakai T. Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation[J]. Mater Trans, 2003, 44: 197- 203.
  • 6del Valle J A , Pérez-Prado M T, Ruano O A. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy[J]. Mater Sci Eng A, 2003, 335: 68-78.
  • 7Meyers M A, V(o)hringer O, Lubarda V A. The onset of twining in metals: a constitutive description [J].Acta Mater, 2001, 49: 4025 - 4039.
  • 8Yoo, M H, Lee J K. Deformation twinning in hcp metals and alloys[J]. Phil Mag, 1991, 63A(5): 987 -1000.
  • 9Serra A. A new model for {101ˉ2} twin growth in hcp metals[J]. Phil Mag, 1996, 73A(2): 333-343.
  • 10Serra A, Bacon D J. Computer simulation of screw dislocation interactions with twin boundaries in hcp metals[J]. Acta Mater, 1995, 43: 4465- 4481.

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部