期刊文献+

基于稳像技术的飞艇监控视频目标追踪 被引量:3

Target tracking using airship supervision video based on video stabilization
原文传递
导出
摘要 一般的目标追踪算法提取目标的颜色或轮廓特征,在图像区域内使用匹配算法完成对目标的追踪。由于飞艇容易受到气流影响,艇载相机平移误差会造成目标在视频的相邻帧间运动距离过大,传统目标追踪算法容易陷入到局部最优解而造成目标跟错或者丢失。该文提出了一种基于视频稳像的追踪方法,使用基于运动估计和混合滤波算法,首先处理视频使之平滑稳定,在此基础上利用人机交互选择目标并应用基于MeanShift的算法实现追踪。比较本文提出的算法和一般算法在飞艇视频目标追踪中的效果,结果表明:该方法在目标追踪中具有更高的准确率,同时满足实时性要求。实验证明了本文提出算法可以准确有效地处理飞艇视频目标跟踪问题。 Traditional target tracking algorithms make use of color or shape features to track the target using matching algorithms in areas near the target.However,airflow can cause large shift errors in the camcorder analysis due to large movements of the target in consecutive frames,resulting in tracking failures due to changes in the local maximum.This paper presents an adaptive Mean Shift tracking method based on video stabilization to track a target by applying motion estimation and mixed filtering to the video in advance.This system gives better tracking accuracy than other algorithms based on the Mean Shift method for real-time processing.Tests show effectiveness of this technique in the field for target tracking using airship supervision video.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第6期809-813,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(91024024/G0310)
关键词 飞艇监控 视频稳像 目标追踪 MEANSHIFT算法 airship supervision video stabilization target tracking Mean Shift algorithm
  • 相关文献

参考文献12

  • 1Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift [C]//Proeeedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head, USA: IEEE Press, 2000, 142- 149.
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5) : 564 - 577.
  • 3Fashing M, Tomasi C. Mean Shift is a bound optimization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3) : 471 - 474.
  • 4Wang J Q, Yagi Y. Integrating color and shape-texture features for adaptive real-time object tracking [J]. IEEE Transactions on Image Processing, 2008, 17(2) : 235 - 240.
  • 5Stern H, Efros B. Adaptive color space switching for face tracking in multi color lighting environment [C]// Proceedings of IEEE International Conference on Automatice Face and Gesture Recognition. Washington DC, USA:IEEE Press, 2002, 249 - 254.
  • 6Serby D, Koller M S, Gool L V. Probabilistic object tracking using multiple features [C]// Proceedings of International Conference on Pattern Recognition. Cambridge UK: IEEE Computer Society Press, 2004:184 - 187.
  • 7Jesse S, ZHU Zhigang, XU Guangyou. Digital video sequence stabilization based on 2.5D motion estimation and inertial motion filtering [J]. Real-Time Image, 2001, 7(4): 357 -365.
  • 8Johansen D L, Hall J K, Beard R W, et al. Stabilization of video from miniature air vehicles for target localization [J]. Journal of Aerospace Computing Information and Communication, 2008, 5(8) : 251 - 273.
  • 9Broggi A, Grisleri P, Graf T, et al. A software video stabilization system for automotive oriented applications [J]. Proceedings of IEEE 61st Vehicular Technology Conference, 2005, 5, 2760-2764.
  • 10Wang C T, Kim J H, Byun K Y, et al. Robust digital image stabilization using the Kalman filter [J]. IEEE Transactions on Consumer Electronics, 2009, 55(1) : 6 - 14.

同被引文献23

  • 1李剑萍.3S技术在灾害监测预测中的应用及展望[J].灾害学,2004,19(z1):83-87. 被引量:17
  • 2王玥,陶洪久.蚁群优化算法在TSP中的应用[J].武汉理工大学学报(信息与管理工程版),2006,28(11):24-26. 被引量:5
  • 3康立山 谢云 尤矢勇 罗祖华.非数值并行算法[M].北京:科学出版社,1994..
  • 4马良,朱刚,宁爱兵.蚁群优化算法[M].北京:科学出版社,2008,2.
  • 5Kanhere N K, Birchfield S T. A taxonomy and analysis of camera cali- bration methods for traffic monitoring applications. IEEE Trans Intell Transp Syst, 2010 , 11 ( 2 ) :441-452.
  • 6Pang C C C, Lam W W L, Yung N H C. A method for vehicle count in the presence of multiple-vehicle occlusions in trafficc images. IEEE Trans. Intell. Transp. Syst, 2007, 8(3):441---459.
  • 7Tsai L W, Hsieh J W, Fan K C. Vehicle detection using normalizedcolor and edge map. IEEE Trans. Image Process, 2007, 16 (3): 850--864.
  • 8Buch N, Velastin S A, Orwell J. A review of computer vision tech- niques for the analysis of urban traffic. IEEE Trans Intell Transp Syst, 2011 ,12(3) :920---939.
  • 9Hain J H W. Lighter-than-air platforms ( blimps and aerostats) for oceanographic and atmospheric research and monitoring [ C ]// OCEANS 2000 MTS/IEEE Conference and Exhibition. IEEE, 2000, 3:1933-1936.
  • 10Hao F, Daugman J. A fast search for a large fuzzy database [ J ]. IEEE Transactions on Information Forensics and Security, 2008, 2 (3) : 204 -206.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部