期刊文献+

基于用户操作行为的兴趣度的分析与计算 被引量:1

Interest Degree of Analysis and Calculation Based on User Behavior
下载PDF
导出
摘要 在互联网的背景下,用户检索行为所体现的兴趣是零散的、分布的。利用一个群集模型来综合这些分布的信息,对个性化服务也会提供帮助。通过对单个用户行为的分析,提出了一种基于操作行为的兴趣度的计算方法,可以有效地计算出该用户对当前内容的兴趣度的基值,并最终为用户兴趣群集模型中各个结点的兴趣度的值的计算提供重要依据。 In the context of the Internet,the interest of the user search behavior is fragmented,distributed.For the personalized service to help,using a cluster model to integrate the distribution of information.Through the analysis of individual user behavior,proposing a method based on user behavior to calculate the current contents of the user's interest degree on the base value,and ultimately it is an important basis for the calculation of the value for users interest degree in all nodes in the cluster model.
机构地区 安徽工业大学
出处 《工业控制计算机》 2011年第7期64-65,115,共3页 Industrial Control Computer
关键词 用户行为 群集模型 兴趣度 user behavior cluster model interst degree
  • 相关文献

参考文献6

二级参考文献14

  • 1费巍,黄如花.基于用户行为分析的搜索引擎优化策略[J].图书情报工作,2005,49(10):75-77. 被引量:21
  • 2柳较乾.再论网络信息利用障碍与对策[J].图书馆论坛,2006,26(2):203-205. 被引量:8
  • 3Xie Y,Mundlura D,Raghavan V V.Incorporating agent based neural network model for adaptive meta-search.The Center for Advanced Computer Studies,University of Louisiana at Lafayette, USA, 2004.
  • 4Joachims T,Granka L.Accurately interpreting click through data as implicit fe.SIGIR,2005.
  • 5Jarvelin K,Kekalainen J.IR evaluation methods for 'retrieving highly relevant documents[C]//Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2000.
  • 6中国互联网络信息中心.中国互联网络发展状况统计报告[OL].2005-05-17.http://www.cnnic.net.cn/download/2005/2005011801.pdf
  • 7Dreilinger D,Howe A.Experiences with selecting search engines using metasearch[].A CM TOIS.1997
  • 8Howe A E,Dreilinger D.SavvySearch: A meta-search engine that learns which search engines to query[].A I Magazine.1997
  • 9Gauch S,Wang G,Gomez M.ProFusion: Intelligent fusion from multiple, distributed search engines[].J ournal of Universal Computer Science.1996
  • 10Callan J P,Connell M.Query-based sampling of text databases[].A CM TOIS.2001

共引文献25

同被引文献14

  • 1高宏宾,潘谷,黄义明.基于频繁项集特性的Apriori算法的改进[J].计算机工程与设计,2007,28(10):2273-2275. 被引量:25
  • 2A1-Betar M A, Doush I A, Khader A T, et al. Novel selectionshemes for harmony search [ J . Applied Mathematicsand Computation, 2012, 218 (10) : 6095- 6117.
  • 3Khmelev D, Tweedy F J. Using Markov chains for i- dentification of Writers [J]. Literary and Linguistic Computing, 2001,16(4) : 299-307.
  • 4Mao YX, Shi BI. AFOPT-Tax: An efficient method for mining generalized requent itemsets[C]//Proc, of the 2nd Asian Conf. on Intelligent Information and Da- tabase Systems(Aciids), 2010 : 82-92.
  • 5Agrawal R, Srikant tC Fast algorithms for mining as- sociation rules[C]//Proc. Large Data Bases(VLDB) of the Int't Conf. on Very Santiago, 1994 : 487-499.
  • 6Mahdavi M, Fesanghary M, Damangir E. An Im proved Harmo-ny Search Algorithm for Solving Opti mization Problems[J]. Applied Mathematics and Corn putation, 2007,188(2) : 1567-1579.
  • 7Yule G U. On sentence length as a statistical character- istic of stylein prose with application to two cases of disputed authorship[J]. Biometrika, 1938,30 : 363-390.
  • 8LiuGM, LuHJ, LouWW, et al. Efficient mining of frequent patterns using ascending frequency ordered prefix-tree[J]. Data Mining and KnowledgeDiscovery (DMKD),2004,9(3):249-274.
  • 9Sriphaew K, Theeramunkong T. Fast algorithm for mining generalized frequent patterns of generalized as- sociation rules[J]. IEICE Trans. on Information and Systems(TOIS), 2004, E87-D(3) : 761-770.
  • 10王伟勤,郑燊海.Apriori算法的进一步改进[J].计算机与数字工程,2009,37(4):20-23. 被引量:13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部