期刊文献+

切削振动加速度时间历程演化过程的动力学特征 被引量:4

Dynamic characteristics of evolution process of cutting vibration acceleration time history
下载PDF
导出
摘要 取自刀架的振动加速度时间历程被分为三大部分:无颤振切削状态,过渡切削状态和颤振状态。这里分别从热力学角度和几何角度描述了切削系统的动力学行为,给出了与无颤振切削状态和颤振状态相对应的振动加速度时间序列的概率密度分布和三维重构吸引子。并计算了各阶段的Lyapunov指数和Kolmogrov熵。同时绘制并讨论了Lya-punov指数和Kolmogrov熵与切削加工参数的关系曲线。研究表明:Lyapunov指数和Kolmogrov熵与切削加工参数的关系曲线变化趋势相同,看起来象稳定阈图,这些曲线对切削加工参数的选择具有指导作用。并且,当切削状态从无颤振状态过渡到颤振状态时,Lyapunov指数和Kolmogrov熵将随振动幅值的增大而增大。 Vibration acceleration time history obtained from a cutter holder was separated into three parts: chatter free state,transition one and chatter one.The reconstructed attractor and the probability density distribution for the vibration acceleration time series were studied in order to observe a system's behavior in geometric form.And Lyapunov exponent and Kolmogrov entropy were given for helping judgment of cutting state.Meanwhile,the relation curves of Lyapunov exponent and Kolmogrov entropy versus machining parameters were plotted and discussed.The studying showed that Lyapunov exponent and Kolmogrov entropy raise up when the amplitude of the vibration acceleration time history goes up from chatter free state,transition one and chatter one;in addition,the relation curves of Lyapunov exponent and Kolmogrov entropy versus machining parameters also raise up and look like stability lobes;the optimal machining parameters can be chosen to decrease the uncertainty of cutting vibration based on the corresponding experimental data.
出处 《振动与冲击》 EI CSCD 北大核心 2011年第7期10-15,44,共7页 Journal of Vibration and Shock
关键词 切削过程 动力学特征 重构吸引子 LYAPUNOV指数 Kolmogrov熵 cutting vibration uncertainty reconstructed attractor lyapunov exponent kolmogrov entropy
  • 相关文献

参考文献19

  • 1Tobias S A. Machine tool vibration [ M].Blackie, London, 1965.
  • 2Koenigsberger I, Tlusty J. Structures of machine tools [ M ]. Pergamon Press, 1971.
  • 3Merritt H E. Theory of self-excited machine tools chatter[ J ]. Trans,ASME, J. Engng Ind. , 1965,87:447-454.
  • 4Hanna N H, Tobias S A. A theory of nonlinear regenerative chatter [ J ]. Trans, ASME, J. Engng Ind. , Feb. , 1974.
  • 5Shi H M, Tobias S A. Theory of finite amplitude machine tool instability,Int. J. Mach[ J ]. Tool Des. Res, 1984,24 ( 1 ) : 45 - 60.
  • 6Tlusty J, Ismal F. Basic nonlinearity in machining chatter [J]. Ann. CIRP,1981,30(1):229-304.
  • 7Grabec I. Chaos generated by the cutting process [ J ]. Physics Letters. 1986,117 : 384 - 386.
  • 8Grabec I. Chaotic dynamics of the cutting process [ J ]. International Journal of Machine Tools Manufacturing, 1988, 28: 19-32.
  • 9Grabec I. Explanation of random vibrations in cutting on grounds of deterministic chaos [ J ]. Robotics and Computer& Integrated Manufacturing, 1988,4 : 129 - 134.
  • 10Hastings W F, Boxley P L, Stevenson M G. Proceedings of the 1 th International Machine Design and Research Conference[ J]. Manchester, MacMillan,1971.

同被引文献30

  • 1杨智春,张蕊丽.基于最大李雅普诺夫指数的壁板热颤振特性分析[J].西北工业大学学报,2009,27(6):770-776. 被引量:8
  • 2周亚军,赵德有.海洋平台结构振动控制综述[J].振动与冲击,2004,23(4):40-43. 被引量:23
  • 3余波,李应红,张朴.关联维数和Kolm ogorov熵在航空发动机故障诊断中的应用[J].航空动力学报,2006,21(1):219-224. 被引量:24
  • 4师汉明.金属切削理论及其应用新探[M].武汉:华中科技大学出版社,2003.
  • 5Kima S J. Prediction of chatter in NC machining based on a dynamic cutting force model for ball end milling[J]. International Journal of Machine Tools & Manufacture, 2007, 48(47) : 1827-1838.
  • 6Cardi A A. Workpiece dynamic analysis and prediction during chatter of turning process[J]. Mechanical Systems and Signal Processing, 2008, 35(22) : 1481- 1494.
  • 7Charoen S T. In-process monitoring and detection of chip formation and chatter for CNC turning[J]. Journal of Materials Processing Technology,2009,56(209) :4682-4688.
  • 8Tarng Y S. On-line drilling chatter recognition and avoidance using an ART2-A neutral network[J] . Int. J. Mach. Tools Manufacture, 2002, 13(7) : 949-957.
  • 9Pérez-Canales D,Vela-Martínez L,Carlos Jáuregui-Correa J, et al. Analysis of the entropy randomness index for machining chatter detection[J]. International Journal of Machine Tools and Manufacture, 2012, 62: 39-45.
  • 10Wang X S, Hu J, Gao J B. Nonlinear dynamics of regenerative cutting processes-comparison of two models [J]. Chaos, Solitons & Fractals, 2006, 29(5): 1219-1228.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部