期刊文献+

轴向流作用下柔性简支梁静态与动态稳定性分析 被引量:1

Static and dynamic stabilities of a simply supported flexible beam with an axial flow
下载PDF
导出
摘要 对于一个轴向流作用下的柔性简支梁流固耦合模型,基于一定的假设,建立了系统的流固耦合非线性动力学方程,并运用参数无量纲化、假设模态、高阶模态截断等方法导出了有限自由度无量纲状态空间方程。根据静态分岔理论,对系统线性化扰动方程的Jacob i系数矩阵特征多项式进行了分析,理论上求得系统发生静态分岔时的临界流速。数值计算结果表明当流速大于临界流速时,系统发生静态失稳,在外界扰动作用下,梁随机地向上或向下弯曲。基于动态Hopf分岔理论与相关的实系数多项式特征根代数判据,证明了系统不会出现振颤失稳。 The liquid-solid coupled dynamic equation was established for a simply supported flexible beam with an axial flow under certain assumptions,and the dimensionless state equation with finite degrees of freedom was derived by introducing dimensionless variables,assumed modes and truncating higher order modes.On the basis of the static bifurcation theory,the Jacobi matrix of the perturbation equation of the system was analyzed,and the static bifurcation critical flow velocity was obtained theoretically.Numerical calculations showed that if the flow velocity exceeds the critical velocity,the system is statically destabilized,and the flexible beam bends upward or downward randomly under the external minimal disturbance.Utilizing the dynamic Hopf bifurcation theory and the relative algebraic criterion for roots of real-coefficient polynomials,it is proved that the flutter destabilization can't take place in this system.
出处 《振动与冲击》 EI CSCD 北大核心 2011年第7期59-62,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(10372076)
关键词 柔性简支梁 状态空间方程 静态分岔 临界流速 动态Hopf分岔 振颤失稳 simply supported flexible beam state equations static bifurcation critical flow velocity Hopf bifurcation flutter destabilization
  • 相关文献

参考文献9

  • 1Doare O, De Langre E. Local and global instability of fluid- conveying pipes on elastic foundations [ J ]. Journal of Fluids and Structure, 2002, 16( 1 ) :1 - 14.
  • 2Misra A K, Wong S S T, Paidoussis M P. Dynamics and stability of pinned-clamped and clamped-pinned cylindrical shells conveying fluid [ J ]. Journal of Fluids and Structure, 2001, 15(8) :1153 - 1166.
  • 3鲁丽,杨翊仁.矩形管内不可压缩粘性流中简支梁的稳定性[J].西南交通大学学报,2001,36(6):561-564. 被引量:7
  • 4Bajaj A K, Sethna P R. Hopf bifurcation phenomena in tubes carrying a fluid [ J ]. SIMA Journal of Applied Mathematics,.
  • 5Guo C Q, Paisoussis M P. Analysis of hydroelastic instabilities of rectangular parallel-plate assemblies [ J ]. ASEM Journal of Pressure Vessel Technology, 2000, 122(4) :502 - 508.
  • 6Tang L S, Paisoussis M P. On the instability and the post- critical behavior of two-dimensional cantilevered flexible plates in axial flow [ J]. Journal of Sound and Vibration, 2007, 305 (1 -2) :97 -115.
  • 7Tang L S, Paisoussis M P. The dynamics of two-dimensional cantilevered plates with an additional spring support in axial flow [ J]. Nonlinear Dynamics, 2008, 51 (3):429-438.
  • 8Nayfeh A H, Mook D T. Nonlinear oscillations [ M ]. John Wiley, New York, 1979.
  • 9张继业,杨翊仁,曾京.Hopf分岔的代数判据及其在车辆动力学中的应用[J].力学学报,2000,32(5):596-605. 被引量:31

二级参考文献8

  • 1曾京.车辆系统的蛇行运动分叉及极限环的数值计算[J].铁道学报,1996,18(3):13-19. 被引量:45
  • 2杨翊仁 鲁丽.粘性流体对刚性矩形管内双跨简支梁固有频率的影响.第十一届全国反应堆结构力学会议论文集[M].北京:原子能出版社,2000.89-92.
  • 3杨翊仁 谭晓惠.板状结构上的非定常流体动压分析.第十一届全国反应堆结构力学会议论文集[M].北京:原子能出版社,2000.93-97.
  • 4倪樵,Acta Mech Solida Sin,2000年,13卷,4期,320页
  • 5杨翊仁,第11届全国反应堆结构力学会议论文集,2000年,89页
  • 6杨翊仁,第11届全国反应堆结构力学会议论文集,2000年,93页
  • 7陈文成,陈国良.Hopf分枝的代数判据[J].应用数学学报,1992,15(2):251-259. 被引量:15
  • 8武际可,周鹍.高维Hopf分叉的数值计算[J].北京大学学报(自然科学版),1993,29(5):574-582. 被引量:8

共引文献35

同被引文献25

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部