期刊文献+

混杂边界轴向运动Timoshenko梁固有频率数值解 被引量:2

Natural frequency numerial solution to an axially moving timoshenko beam with hybrid boundary
下载PDF
导出
摘要 运用微分求积方法求解两端带有扭转弹簧且弹簧系数均可任意变化的非对称下的轴向运动Timoshenko梁的固有频率。以权系数修改法处理轴向运动Timoshenko梁的混杂边界。研究系统的前两阶固有频率随轴向速度、刚度系数以及弹簧弹性系数变化的情况,并将数值计算结果与半解析半数值的研究结果进行比较,结果表明,数值计算结果与半解析半数值结果基本吻合。 The differential quadrature method was developed to solve natural frequencies of an axially moving asymmetric hybrid supported Timoshenko beams with randomly varying spring coefficients at both sides.The weighted coefficient matrices were modified for dealing with the hybrid boundary.The axially moving speed,the stiffness of the beam and the spring coefficients were numerically investigated for clarifying their influences on the first two natural frequencies,and the results were compared with the semi-analytical and semi-numerical solutions.It was shown that both of them are basically consistent.
出处 《振动与冲击》 EI CSCD 北大核心 2011年第7期245-249,共5页 Journal of Vibration and Shock
基金 国家自然科学基金项目(10902064) 国家杰出青年科学基金(10725209) 上海高校选拔培养优秀青年教师科研专项基金(B37-0101-08-003) 上海市优秀学科带头人计划(09XD1401700) 上海大学创新基金项目(08-22) 上海市重点学科建设项目(S30106) 长江学者和创新团队发展计划基金课题(IRT0844)资助
关键词 轴向运动梁 Timoshenko模型 固有频率 微分求积法 axially moving beam transverse vibration natural frequency differential quadrature method
  • 相关文献

参考文献11

二级参考文献54

共引文献74

同被引文献21

  • 1陈镕,万春风,薛松涛,唐和生.Timoshenko梁运动方程的修正及其影响[J].同济大学学报(自然科学版),2005,33(6):711-715. 被引量:54
  • 2铁摩辛柯 湖人礼(译).工程中的振动问题[M].北京:人民铁道出版社,1978.245-251.
  • 3王力力,易伟建,何庆锋.考虑剪切变形和转动惯量影响的梁的固有频率计算[J].铁道科学与工程学报,2007,4(5):6-10. 被引量:4
  • 4Han S M, Benaroya H, Wei T. Dynamic of transversely vibrating beam using four engineering theories. Journal of Sound and Vibra- tion, 1999 ;225 (5) :935-988.
  • 5Loya J A, Rubio E, Fernandez-Saez J. Natural frequencies for ben- ding vibrations of Timoshenko cracked beams. Journal of Sound and Vibration, 2006 ; 290:640-653.
  • 6Xu Sunming, Wang Xinwei. Free vibration analyses of Timoshenko beams with free edges by using the discrete singular convolution. Ad- vances in Engineering Software, 2011 ; 42(10) : 797-806.
  • 7Anderson R A, Calif P. Flexural vibrations in uniform beams ac- cording to the Timoshenko theory. Journal of Applied Mechanics, 1953 ;20(3) :504-510.
  • 8Newterenko V V. A theory for transverse vibrations of the Timoshen- ko beam. Journal of Applied Mathematics and Mechanics, 1993; 57 (3) : 669-677.
  • 9Stephen N G. The second frequency spectrum of Timoshenko beams. Journal of Sound and Vibration, 1982; 80(4) : 578-582.
  • 10de Anda A D,Flores J, Gutierrez L, et al. Experimental study of the Timoshenko beam theory predictions. Journal of Sound and Vibra- tion, 2012; 331 : 5732-5744.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部