期刊文献+

选择性紫外曝光法修饰微流控芯片用于制备高度均一的单乳液和复乳液 被引量:1

Preparation of Highly Uniform Single and Double Emulsions with Microfluidic Chips Modified by Region-selective UV Irradiation
原文传递
导出
摘要 利用选择性紫外曝光法对聚二甲基硅氧烷(PDMS)微流控芯片通道内壁进行了部分亲/疏水改性,通过接触角和原子力显微镜对改性表面进行表征,并利用改性后的芯片制备出了高度均一的单乳液和复乳液.结果表明,在芯片的非曝光区域,光引发剂二苯甲酮使PDMS表面粗糙且保持疏水性,接触角为101o;而在曝光区域,由于聚合形成的聚丙烯酸交联到PDMS上使其表面光滑且具有亲水性,接触角为62o,形成的亲/疏水特性可维持30d以上.利用改性后芯片制备的大豆油、三羟甲基丙烷丙烯酸酯和氟碳油3种单乳液的粒径变异系数均低于3%,而复乳液外径和内径的变异系数分别为3.5%和2.9%. A novel region-selective hydrophilic modification approach by UV irradiation was used to change the surface property in PDMS-based microfluidic chip. The surface properties of microchannels before and after modification were characterized by contact angle measurement and atomic force microscope. Thereafter, microfluidic chip region-selectively modified by this method was applied to prepare highly uniform single and double emulsions. The results demonstrated that in the un-exposed region, original hydrophobic PDMS surface tended to be very coarse and hydrophobic with contact angle 101° after photoinitiator solution treatment. But in the UV-exposed region, poly(acrylic acid) was coated on the surface, leading to a hydrophilic surface with contact angle 62°. In addition, those hydrophilic and hydrophobic features were able to maintain at least for 30 d. Using the modified microfluidic chips, three kinds of highly uniform O/W single droplets, soybean oil, trimethylolpropane triacrylate and fluorocarbon oil, were prepared with coefficient variation (CV) below 3%. Uniform W/O/W double emulsions were also successfully prepared with CV of the outer and inner diameters at 3.5% and 2.9%, respectively.
出处 《过程工程学报》 CAS CSCD 北大核心 2011年第3期461-467,共7页 The Chinese Journal of Process Engineering
基金 国家自然科学基金资助项目(编号:20706054 20728607 20976180) 国家高技术研究发展计划(863)基金资助项目(编号:2008AA10Z302) 国家重点基础研究发展规划(973)基金资助项目(编号:2009CB724705)
关键词 表面改性 微流控芯片 聚二甲基硅氧烷 尺寸均一 乳液 surface modification microfluidic chips poly(dimethylsiloxane) size uniformity emulsion
  • 相关文献

参考文献25

  • 1Chen L, Manz A, Day P J R. Total Nucleic Acid Analysis Integrated on Microfluidic Devices [J]. Lab Chip, 2007, 7(11): 1413-1423.
  • 2Arora A, Simone G, Salieb-Beugelaar G B. Latest Developments in Micro Total Analysis Systems [J]. Anal. Chem., 2010, 82(12): 4830-4847.
  • 3Skurtys O, Aguilera J M. Applications of Microfluidic Devices in Food Engineering [J]. Food Biophysics, 2008, 3(1): 1-15.
  • 4Weibel D, Whitesides G. Applications of Microfluidics in Chemical Biology [J]. Curr. Opin. Chem. Biol., 2006, 10(6): 584-591.
  • 5Lin W Y, Wang Y J, Wang S T. Integrated Microfluidic Reactors [J]. Nano Today, 2009, 4(6): 470-481.
  • 6Liu P, Mathies R A. Integrated Microfluidic Systems for High-performance Genetic Analysis [J]. Trends Biotechnol., 2009, 27(10): 572-581.
  • 7Whitesides G M. The Origins and the Future of Microfluidics [J]. Nature, 2006, 442(7101): 368-373.
  • 8Gao F, Su Z G, Wang P. Double Emulsion Templated Microcapsules with Single Hollow Cavities and Thickness-controllable Shells [J]. Langmuir, 2009, 25(6): 3832-3838.
  • 9Zhang Y L, Lian G P, Zhu S P, et al. Investigation on the Uniformity and Stability of Sunflower Oil/Water Emulsions Prepared by a Shirasu Porous Glass Membrane [J]. Ind. Eng. Chem. Res., 2008, 47(17): 6412-6417.
  • 10K6ster S, Angile F, Duan H. Drop-based Microfluidic Devices for Encapsulation of Single Cells [J]. Lab Chip, 2008, 8(7): 1110-1 115.

二级参考文献17

共引文献16

同被引文献22

  • 1Wegener M, Paul N, Kraume M. Fluid Dynamics and Mass Transfer at Single Droplets in Liquid/Liquid Systems [J]. Int. J. Heat Mass Transfer, 2014, 71(71): 475-495.
  • 2Liu L L, Tang H, Quan S P. Shapes and Terminal Velocities of a Drop Rising in Stagnant Liquids [J]. Comp. Fluids, 2013, 81(9): 17-25.
  • 3Ohta M, Iwasaki E, Obata E, et al. A Numerical Study of the Motion of a Spherical Drop Rising in Shear-thinning Fluid Systems [J]. J. Non Newtonian Fluid Mech., 2003, 116(1): 95-111.
  • 4Dabiri S, Doostmohannadi A, Bayareh M, et al. Rising Motion of a Swarm of Drops in Linearly Stratified Fluid [J]. Int. J. Multiphase Flow, 2015, 69: 8-17.
  • 5Biumler K, Wegener M, Paschedag A R, et al. Drop Rise Velocities and Fluid Dynamic Behavior in Standard Test Systems for Liquid/Liquid Extraction-experimental and Numerical Investigation [J]. Chem. Eng. Sci., 2011, 66(3): 426-439.
  • 6Wegener M, Kraume M, Paschedag A R. Terminal and Transient Drop Rise Velocity of Single Toluene Droplets in Water [J]. AIChE J., 2010, 56(1): 2-10.
  • 7Ohta M, Iwasaki E, Obata E, et al. Dynamic Processes in a Deformed Drop Rising through Shear-thinning Fluids [J]. J. Non Newtonian Fluid Mech., 2005, 132(1): 100-107.
  • 8Laleh A P, Svrcek W Y, Monnery W D. Design and CFD Studies of Multiphase Separators--A Review [J]. Can. J. Chem. Eng., 2012, 90(6): 1547-1561.
  • 9Monnery W D, Svrcek W Y. Successfully Specify Three-phase Separators [J]. Chem. Eng. Prog., 1994, 90(9): 29-40.
  • 10Whitesides G M. The Origins and the Future of Microfluidics [J].Nature,2006,442(7101):368-373.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部