期刊文献+

广义变分不等式的优质泛函 被引量:3

Merit Functions for Generalized Variational Inequalities
下载PDF
导出
摘要 引入了广义变分不等式的几类优质泛函,利用这些优质泛函,在很弱的条件下建立了广义变分不等式解集合的误差界.方法和结果是新的,且推广和改进了这一领域内一些已知结果. In this paper,we consider some classes of merit functions for generalized variational inequalities.Using these functions,we obtain error bounds for the solution of generalized variational inequalities under some mild conditions.Our approach and results are new and generalize some known results in this field.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期450-453,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10701059)资助项目
关键词 广义变分不等式 优质泛函 误差界 generalized variational inequalities merit functions error bounds
  • 相关文献

参考文献15

  • 1Cohen G. Auxiliary problem principle extend to variational inequality[ J]. J Optim Theory Appl, 1988,59(2) :325 -333.
  • 2Cottle R W, Giannessi F, Lions J. Variational Inequality:Theory and Applications [ M ]. New York :John Wiley & Sons, 1980.
  • 3Facchinei F, Pang J S. Finite- Dimensional Variational Inequalities and Complementarity Problems[ M ]. New York:Springer- Verlag,2003.
  • 4He Y R. A new double projection algorithm for variational inequalities [ J ]. J Comput Appl Math,2006,185:166 - 173.
  • 5Bnouhachem A, Noor M A. Inexact proximal point method for general variational inequalities [ J ]. J Math Anal Appl,2006,324: 1195 - 1212.
  • 6Ng K F, Tan L L. Error bounds of regularized gap functions for nonsmooth variational inequality problems [ J ]. Math Prograin, 2007, A110:405 - 429.
  • 7Tan L L. Regularized gap functions for nonsmooth variational inequality problems [ J ]. J Math Anal App1,2007,334:1022 - 1038.
  • 8孙洪春,王宜举.闭凸多面体上广义变分不等式与互补问题的误差界[J].工程数学学报,2007,24(4):691-695. 被引量:1
  • 9Fan J H, Wang X G. Gap functions and global error bounds for set - valued variational inequalities [ J ]. J Comput Appl Math, 2010,233:2956 - 2965.
  • 10Yamashita N, Taji K, Fukushima M. Unconstrained optimization reformulations of variational inequality problems[ J ]. J Optim Theory Appl, 1997,92:439 - 456.

二级参考文献6

  • 1Kinderlehrer D,Stampacchia G.An Introduction to Variational Inequalities and Their Applications[M].New York:NY,Academic Press,1980
  • 2Noor M A.General variational inequalities[J].Appl Math Lett,1988,1:119-121
  • 3Xiu N H,Zhong J Z.Global projection-type error bound for general variational inequlities[J].J Optim Theory Appl,2002,112(1):213-228
  • 4Pang J S.A posterriori error bound for the linearly-constrained variational inequality problem[J].Math of Operations Research,1987,12:474-484
  • 5Solodov M V.Convergence rate analysis of iteractive algorithms for solving variational inequality problems[J].Math Programming,2003,Ser A 96:513-528
  • 6Facchinei F,Pang J S.Finite-Dimensional Variational Inequalities and Complementarity Problems[M].Springer,New York,2003

同被引文献39

  • 1方长杰,郑继明,吴慧莲.Banach空间中一类广义集值非线性混合似变分不等式解的存在性与算法[J].四川师范大学学报(自然科学版),2007,30(1):40-44. 被引量:8
  • 2毛秀珍,何诣然.拟单调广义向量变分不等式[J].四川师范大学学报(自然科学版),2007,30(2):134-137. 被引量:9
  • 3Noor M A, Huang Z Y. Wiener-Hopf equation technique for variational inequalities and nonexpansive mappings[J]. Appl Math Comput,2007,191(2):504-510.
  • 4Chang S S, Joseph Lee H W, Chan C K. Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces[J]. Appl Math Lett,2007,20:329-334.
  • 5Noor M A. Iterative methods for general mixed quasivariational inequalities[J]. J Optimization Theory and Applications,2003,119(1):123-136.
  • 6Huang Z Y, Noor M A. An explicit projection method for a system of nonlinear variational inequalities with different (γ,r)-cocoercive mappings[J]. Appl Math Comput,2007,190:356-361.
  • 7Noor M A, Noor K I. Projection algorithms for solving a system of general variational inequalities[J]. Nonlinear Analysis,2009,70:2700-2706.
  • 8万波.混合似变分不等式的一个新预解算法[J].重庆工商大学学报(自然科学版),2007,24(5):467-469. 被引量:3
  • 9Noor M A. General variational inequalities [J]. Appl Math Lett, 1986, 1: 119- 121.
  • 10Xiu N H, Zhong J Z. Golbal projection-type error bound for general variational inequalities [J]. J Optim Theory Appl, 2002, 112 (1): 213-228.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部