期刊文献+

Prediction of Glass Transition Temperatures of Polyarylates Using a Support Vector Machine Model

Prediction of Glass Transition Temperatures of Polyarylates Using a Support Vector Machine Model
下载PDF
导出
摘要 A three-descriptor quantitative structure-property relationship (QSPR) model, based on the support vector machine (SVM) algorithm, was constructed to predict the glass transition temperatures (Tgs) ofpolyarylates with complex structures. A total of 50 polyarylates were randomly divided into three sets, viz., the training set (30 polymers), validation set (10 polymers) and prediction set (10 polymers). By adjusting various parameters by trial and error, the final optimum SVM model based on Austin Model 1 (AM1) calculation is a polynomial kernel with the parameters C of 100, ε of 1.00E-05 and d of 2. The root-mean-square (RMS) errors obtained from the training set, validation set and prediction set are 19.4, 12.8 and 15.5 K, respectively. Research results show that the proposed SVM model has better statistical quality than the previous models. Thus, applying the SVM algorithm to predict Tgs of polymers is feasible. A three-descriptor quantitative structure-property relationship (QSPR) model, based on the support vector machine (SVM) algorithm, was constructed to predict the glass transition temperatures (Tgs) ofpolyarylates with complex structures. A total of 50 polyarylates were randomly divided into three sets, viz., the training set (30 polymers), validation set (10 polymers) and prediction set (10 polymers). By adjusting various parameters by trial and error, the final optimum SVM model based on Austin Model 1 (AM1) calculation is a polynomial kernel with the parameters C of 100, ε of 1.00E-05 and d of 2. The root-mean-square (RMS) errors obtained from the training set, validation set and prediction set are 19.4, 12.8 and 15.5 K, respectively. Research results show that the proposed SVM model has better statistical quality than the previous models. Thus, applying the SVM algorithm to predict Tgs of polymers is feasible.
出处 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第7期943-950,共8页 结构化学(英文)
基金 supported by the Open Project Program of Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education,China (No.10HJYH06)
关键词 glass transition temperature structure-property relations support vector machine glass transition temperature, structure-property relations, support vector machine
  • 相关文献

参考文献1

二级参考文献18

  • 1Ma,C.Y.; Guo,L.L.; Liang,Q.J.; Li,Y.P.; Li,S.W.; Wang,Z.J.China Environmental Science 2002,22,408-411.
  • 2Krishnan,A.V.; Starhis,P.; Permuth,S.F.Endocrinology 1993,132,2279-2286.
  • 3Sadler,B.R.; Cho,S.J.; Ishaq,K.S.; Chae,K.; Korach,K.S.J.Med.Chem.1998,41,2261-2267.
  • 4Gao,H.; Katzenellenbogen,J.A.; Garg,R.; Hansch,C.Chem.Rev.1999,99,723-744.
  • 5Liu,S.S.; Cai,S.X.; Cao,C.Z.; Li,Z.L.J.Chem.Inf.Comput.Sci.2000,40,1337-1348.
  • 6Chen,Z.T.; Zhou,P.; Li,G.R.; Li,Z.L.Chinese J.Struct.Chem.2006,25,68-72.
  • 7Zhou,P.; Mei,H.; Tian,F.F.; Li,Z.L.Chinese J.Anal.Chem.2006,34,1096-1100.
  • 8Klebe,G.; Abraham,U.; Mietzner,T.J.Med.Chem.1994,37,4130-4146.
  • 9Bolger,R.; Nestich,S.; Wiese,T.; Ervin,K.; Checovich,W.Health Perspect.1998,106,551-557.
  • 10Pons,M.; Gagne,D.; Nicolas,J.C.; Mehtali,M.Biotechniques 1990,9,450-459.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部