期刊文献+

Thermal Decomposition Kinetics of Some Di- and Triorganotin(IV) Carboxylates Derived from para-Nitrophenylethanoic Acid

Thermal Decomposition Kinetics of Some Di- and Triorganotin(IV) Carboxylates Derived from para-Nitrophenylethanoic Acid
原文传递
导出
摘要 Thermogravimetric (TG) investigations of organotin(IV) carboxylates with the general formula RmSnL4-m (where R=CH3, C2H5, n-C4H9, C6H5, cyclo-C6H11, n-C8H17, m=2, 3, and L=para-nitrophenylethanoate anion) have been performed. Derivative thermogravimetry (DTG) and differential thermal analysis (DTA) techniques, Horowitz-Metzger method and the fundamental thermodynamic relations are used to evaluate the thermokinetic pa- rameters of each thermal degradation pattern. Results reveal that the thermal stability is functional to Sn--C and Sn--O bonds. In the case of R2SnL2, activation energy, reaction order and pre-exponential factor associated with the bulk degradation processes increase as the alkane chain length increases. Hence, Oct2SnL2 is thermally more stable than Bu2SnL2, which in turn is more resistant to thermal dissociation than Et2SnL2. The same phenomenon is not observed for R3SnL compounds because their degradation is highly irregular. Furthermore, R2SnL2 has larger values of kinetic parameters than those of corresponding triorganotin(IV) para-nitrophenylethanotes. Thermodynamic parameters of these compounds also reinforce the above facts. Thermogravimetric (TG) investigations of organotin(IV) carboxylates with the general formula RmSnL4-m (where R=CH3, C2H5, n-C4H9, C6H5, cyclo-C6H11, n-C8H17, m=2, 3, and L=para-nitrophenylethanoate anion) have been performed. Derivative thermogravimetry (DTG) and differential thermal analysis (DTA) techniques, Horowitz-Metzger method and the fundamental thermodynamic relations are used to evaluate the thermokinetic pa- rameters of each thermal degradation pattern. Results reveal that the thermal stability is functional to Sn--C and Sn--O bonds. In the case of R2SnL2, activation energy, reaction order and pre-exponential factor associated with the bulk degradation processes increase as the alkane chain length increases. Hence, Oct2SnL2 is thermally more stable than Bu2SnL2, which in turn is more resistant to thermal dissociation than Et2SnL2. The same phenomenon is not observed for R3SnL compounds because their degradation is highly irregular. Furthermore, R2SnL2 has larger values of kinetic parameters than those of corresponding triorganotin(IV) para-nitrophenylethanotes. Thermodynamic parameters of these compounds also reinforce the above facts.
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2011年第7期1359-1365,共7页 中国化学(英文版)
关键词 organotin(IV) caroxylate THERMOGRAVIMETRY decomposition kinetics activation energy thermodynamics organotin(IV) caroxylate, thermogravimetry, decomposition, kinetics, activation energy, thermodynamics
  • 相关文献

参考文献30

  • 1Valor, A.; Reguera, E.; Torres-Garcia, E.; Mendoza, S.; Sanchez-Sinencio, E Thermochim. Acta 2002, 389, 133.
  • 2Gaarcia, E. T.; Barranco, A. P.; Romas, C. V.; Fuentes, G. A. J. Mater Res. 2001, 16, 2209.
  • 3Torres-Garcfa, E.; Pelaiz-Barranco, A.; Vazquez, C.; Cal- deron Pifiar, E; Perez Martinz, O. Thermochim. Acta 2001, 372, 39.
  • 4Fatih, D.; Bedrenttin, M.; Ismet, K. Chin. J. Chem. 2010, 28, 1114.
  • 5Danish, M.; Ahmad, N.; Zahara, N.; Ali, S.; Muhammad, N. J. lran. Chem. Soc. 2010, 7, 846.
  • 6A1-Maydama, H.; E1-Shkeil, A.; Khalid, M. A.; A1-Karbouly, A. Ecl. Quim., Sdo Paulo 2006, 31, 45.
  • 7Zsako, J. J. Phys. Chem. 1968, 72, 2406.
  • 8Otera, J. Chem. Rev. 1993, 93, 1449.
  • 9Dalil, H.; Biesemans, M.; Teerenstra, M.; Willem, R.; Angi- olini, L.; Salatelli, E.; Caretti, D. Macromol. Chem. Phys. 2000, 12, 1266.
  • 10Blunden, S. J.; Hill, R.; Sutton, S. E. Appl. Organomet. Chem. 1991, 5, 159.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部