期刊文献+

基于噪声特点和l_1凸松弛技术的图像去模糊方法 被引量:5

Image deblurring based on noise characteristics and l_1 convex relaxation
下载PDF
导出
摘要 图像去模糊本质上是求解一个病态问题。由于理论上图像均存在稀疏域的特点,l1凸松弛技术经常用来求解图像去模糊的病态问题。然而,在获取图像的实际过程中,不同类型的噪声可能会引入到模糊图像中。对于不同噪声污染的模糊图像,如果仍然采用同一模型进行图像去模糊,很难产生令人满意的结果。基于此,本文在分析噪声对模糊图像污染特点的基础上,提出采用不同的l1凸松弛模型去除图像模糊和噪声的方法。在所提的方法中,根据模糊图像的像素是全部还是部分被噪声污染,在l1凸松弛的优化模型中选用不同的保真项。实验结果验证了本文提出的基于噪声特点和l1凸松弛技术的图像去模糊方法的正确性和有效性。 Image deblurring is inherently to solve an ill-posed problem.The technique of l1convex relaxation is usually used to solve this ill-posed problem because any one image exists a sparse domain in theory.However,different types of noise may be introduced into the blur image in the practical process of acquiring the image.It is difficult to obtain satisfactory results if the same model is used to deblur the image for different degrees.In view of this,we firstly analyze the characteristics which the blur image is corrupted by noise,and then propose that different models of l1 convex relaxation are used to recover the image.In the proposed method,different fidelity terms are used in the optimization models of l1 convex relaxation according to all pixels or parts of the blur image corrupted by the noise.The experimental results verify the correctness and efficiency of the proposed method.
出处 《中国体视学与图像分析》 2011年第2期118-123,共6页 Chinese Journal of Stereology and Image Analysis
基金 国家自然科学基金(61033004 60736043 61070138) 国家教育部博士点基金资助项目(200807010004)
关键词 图像去模糊 l1凸松弛技术 噪声 稀疏表示 image deblurring l1convex relaxation noise sparse representation
  • 相关文献

参考文献12

  • 1Lagendijk R L, Biemond J. Iterative identification and restoration of images[ M ]. Academic Press, 2005.
  • 2Banham M R, Katsaggelos A K. Digital image restoration [J]. IEEE Signal Processing Magazine, 1997, 14(2): 24 - 41.
  • 3Kubota A, Aizawa K. Reconstructing arbitrarily focused images from two differently focused images using linear filters [ J ]. IEEE Transactions on Image Processing, 2005, 14(11) : 1848 - 1859.
  • 4Chen F, Ma J L. An empirical identification method of gaussian blur parameter for image deblurring [ J]. IEEE Transactions on Signal Processing, 2009, 57 (7) : 2467 - 2478.
  • 5Cai Jianfeng, Ji Hui, Lilt Chaoqiang, et al. Blind motiondeblurring from a single image using sparse approximation [ C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition . IEEE Computer Society,2009 : 104 -111.
  • 6Hansen P C, Nagy J G, Oleary D P. Deblurring images, matrices, spectra, and filtering[ M ]. Society for Industri- al and Applied Mathematics Philadelphia, 2006.
  • 7Huang Yumei, Ng M K, Wen Youwei. Fast image resto- ration methods for impulse and Gaussian noises removal [J]. IEEE Signal Processing Letters, 2009, 16(6): 457 -460.
  • 8Boracchi G, Foi A. Uniform motion blur in Poissonian noise: blur/noise tradeoff[ J]. IEEE Transactions on Im- age Processing, 2011, 20(2) : 592 -598.
  • 9Zhang Haichao, Zhang Yanning. Sparse representation based iterative incremental image deblurring [ C ]//2009 16th IEEE International Conference on Image Processing. 2009 : 1293 - 1296.
  • 10Bronstein M M, Bronstein M, Zibulevsky M. Blind de- convolution of images using optimal sparse representation [J]. IEEE Transactions on Image Processing, 2005, 14 (6) : 726 -735.

同被引文献34

  • 1张丽,高河伟,邢宇翔,陈志强,程建平.直线轨迹扫描断层成像中的图像重建与恢复方法[J].中国体视学与图像分析,2008,13(4):241-245. 被引量:1
  • 2Kundur D, Hatzinakos D. Blind image deconvolution [J]. IEEE Signal Processing Magazine, 1996, 13(3): 43-64.
  • 3Joshi N, Kang S B, Zitnick C L, et al. Image deblurring using inertial measurement sensors [J]. ACM Transactions on Graphics, 2010, 29(4): Article No. 30.
  • 4Yuan L, Sun J, Quan L, et al. Progressive inter-scale and intra-scale non-blind image deconvolution [J]. ACM Transactions on Graphics, 2008, 27(3): Article No. 74.
  • 5Levin A, Sandl P, Cho T S, et al. Motion-invariant photography [J]. ACM Transactions on Graphics, 2008, 27 (3) : Article No. 71.
  • 6Huang J, Mumford D. Statistics of natural images and models [C] //Proceedings of Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 1999:541-547.
  • 7Roth S, Black M J. Fields of experts: a framework for learning image priors [C] //Proceedings of Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2005:860-867.
  • 8Levin A. Blind motion deblurring using image statistics [C]// Proceedings of Neural Information Processing Systems. Cambridge: MIT Press, 2006: 841-848.
  • 9Fergus R, Singh B, Hertzmann A, et al. Removing camera shake from a single photograph[J]. ACM Transactions on Graphics, 2006, 25(3): 787-794.
  • 10Shan Q, Jia J, Agarwala A. High-quality motion deblurring from a single image [J]. ACM Transactions on Graphics, 2008, 27(3) : Article No. 73.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部