期刊文献+

Ti-600合金的高周疲劳性能研究 被引量:4

High Cycle Fatigue of Ti-600 Alloy
原文传递
导出
摘要 采用120~130Hz的频率测试Ti-600合金光滑试样室温高周轴向应力疲劳性能。结果表明,应力比(R)为0.1时,合金的疲劳强度为475MPa,与IMI834合金相当;合金内含有较细小、薄片状的、互相交错排列的α+β相,这种细小的α+β相间的层状组织对于阻止疲劳裂纹的扩展和提高疲劳裂纹寿命有重要作用;疲劳裂纹扩展阶段,应力同为600MPa时,疲劳寿命为8.61×105的合金试样比寿命为1.78×106的疲劳条纹间距宽;合金内稀土相的尺寸由几个μm到0.2μm变化,合金中未观察到与稀土相颗粒有关的裂纹萌生。 High cycle fatigue(HCF) of Ti-600 alloy was tested at a frequency of 120-130 Hz and load ratio R of 0.1.The results show that the HCF strength for the alloy at ambient temperature is 475 MPa,comparable with that of IMI834 alloy.The observed high tensile strength and high HCF strength is attributed to its overlapping fine and thin-plate-like α+β phase microstructure.The propagating region of the fatigue crack for the as-annealed composite is regular and wide,which contribute to its improved HCF strength and prolonged fatigue crack propagation life.The distance between two fatigue stripes for the sample fractured at 8.61 105 cycles is wider than that of the sample failed at 1.78 106 cycles,indicating that their propagation resistance for fatigue cracks is smaller.The average grain size of rare earth phases ranges from several micrometers to 0.2 m,and no cracks corresponding to rare earth particles are initiated.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第7期1202-1205,共4页 Rare Metal Materials and Engineering
基金 国家"973"计划资助项目(2007CB613807) 国家科技支撑计划资助项目(2007BAE07B01)
关键词 高温钛合金 Ti-600合金 疲劳强度 疲劳裂纹 稀土相 high temperature Ti alloys Ti-600 alloy fatigue strength fatigue cracks rare earth phases
  • 相关文献

参考文献11

  • 1Bondarchuk V I, Ivasishin O M, Moiseyeva 1 V. Metal Physics and Advanced Technologies[J], 2001, 19(5): 743.
  • 2Weiss I, Semiatin, S L. Maters Sci & Eng A[J], 1999, 263(2): 243.
  • 3Lee D H, Nam S W, Choe S J. Scripta Materialia[J], 1999, 40(3): 265.
  • 4Zhang Jun(张均),Li Dong(李东).α2 Ordered Phase in High Temperature Titanium Alloys(高温钛合金中的相)[M].Shenyang:Northeastern University Press,2002.
  • 5张尚洲,王青江,李阁平,刘羽寅,李东.高温钛合金Ti-60热处理窗口与性能的关系[J].金属学报,2002,38(z1):70-73. 被引量:18
  • 6Cui W F, Liu C M, Zhou L et al. Mater Sci Eng A[J], 2002, A323:192.
  • 7Zeng L Y, Hong Q, Yang G Jet al. Trans Nonferrous Met Soc China[J], 2007, 17(S): 522.
  • 8HongQuan(洪权) ZhangZhenqi(张振祺) YangGuanjun(杨冠军)etal.金属学报,2002,38:135-135.
  • 9Tao Chunhu(陶春虎),LiuQingquan(刘庆泉),CaoChunxiao(曹春晓)et al.Failure and Prevention of Aeronautical Titanium AtZoy(航空用钛合金的失效与预防)[M].Beijing:Defence Industry Press,2002.
  • 10Boyer R, Welsch G, Collings E W. Materials Properties Handbook." Titanium Alloys[M]. Ohio: ASM lnternatiorial,1994.

二级参考文献4

  • 1[1]Perters M, Lutjering G, Ziegler G. Z Metallkd, 1983; 74:274
  • 2[2]Borradaile J B, Jeal R H. In: Kimura H and Izumi C eds., Titanium Science and Technology, Warrendale, PA:Metallurgical Society of AIME, 1980:141
  • 3[3]Lee D H, Nam S W, Choe S J. Scr Mater, 1999; 40:265
  • 4[4]Boyer R, Welsch G, Collings E W. Materials Properties Handbooks: Titanium Alloys, Ohio: The Materials Information Society, ASM International, Materials Park, 1994:439

共引文献19

同被引文献37

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部