期刊文献+

弦理论与卡-丘流形的结合 被引量:2

The Combination of String Theory and Calabi-Yau Manifold
原文传递
导出
摘要 经过半个多世纪的研究,尤其是两次革命的推进,弦理论成功地成为了目前最唯美、最有前途的描述宇宙的理论。其中引发第一次革命很重要的一个工作,是一个数学上存在已久的卡-丘流形被发现对弦理论有用并被引入弦理论中;就是十年之后第二次革命所引出的延续至今的M理论研究中,卡-丘流形依然是核心。弦理论与卡-丘流形的结合是整个弦理论历史上影响深远的工作。 After half a century of research, in particular the promotion of two revolutions, String Theory has success- fully become the most aesthetic and promising description of the universe. The very important research which caused the first revolution is that an already existing mathematical Calabi -Yau manifold was found to be useful for String Theory and was introduced in String Theory. In the research of M - theory, which occurred in the second revolution ten years later and continues to today, Calabi - Yau manifold is still the core. The combination of String Theory and Calabi - Yau manifold is the far - reachin~ wnrk th hn,,t ~ho 1~; r ~_:~_ ,vl
作者 冯晓华 高策
出处 《科学技术哲学研究》 CSSCI 北大核心 2011年第4期68-77,共10页 Studies in Philosophy of Science and Technology
基金 国家哲学社会科学基金项目(08BZX020) 教育部人文社科基金项目(08JC0010)
关键词 弦理论 卡-丘流形 结合 菲利普·坎德拉斯 String Theory Calabi - Yau manifold combination P. Candelas
  • 相关文献

参考文献43

  • 1丘成桐.几何三十载[M]//54克峰,季理真.丘成桐的数学人生.杭州:浙江大学出版社,2006.
  • 2[英]罗杰·彭罗斯.通向实在之路[M].王文浩,译.长沙:湖南科学技术出版社,2008:19.
  • 3Green M. B. and Schwarz J. H. Anomaly Cancellations in Su- persymmetrie D -- 10 Gauge Theory and Snperstring Theory [ J ]. Phys. Lett. B, 1984,149 ( 1 - 3 ) : 117 - 122.
  • 4Kaluza Th. yon. Zum Unitatsproblem der physik [ J ]. Sit- zungsberichte der Preubische Akademie der Wissenschaften zu Berlin, Physikalisch - Mathematische Klasse, 1921,1 : 966 - 972.
  • 5Klein O. Quantentheorie und F~infdimensionale Relativitats- theorie[ J ]. Zeitschrift ftir Physik, 1926,37 ( 12 ), 895 - 906.
  • 6Jones A. Z. and Robbins D. String Theory for Dummies [ M ]. Indianapolis, Canada : Wiley,2010 : 178 - 181.
  • 7Gross M. W. , Huybrechts D. and Joyce D. Calabi - Yau Manifold and Related Geometries [ M ]. Berlin Heidelberg : Springer - Verlag,2003 : 8.
  • 8Yau S. T. Calabi - Yau Manifold, 2009. [ 2010 - 11 - 05 ]. http://www, scholarpedia, org/article/Calabi - Yau_mani- fold.
  • 9Calabi E. On Kahler Manifolds with Vanishing Canonical Class [ J ], Algebraic Geometry and Topology : a Symposium in Honor of S. Lefschetz [ C ] . Princeton University Press, Princeton, N. J. , 1957:78 -89.
  • 10Calabi E. The Space of Kahler Metrics [ J ]. Proceedings of the International Congress of Mathematicians ( Amsterdam, 1954) [ C]. Erven P. Noordhoff N. V. , Groningen; North - Holland Publishing Co. , Amsterdam, 1957 (2) : 206 - 207.

共引文献1

同被引文献59

  • 1曹玲.弦理论奏出美妙世界[J].Newton-科学世界,2006(7):4-10. 被引量:2
  • 2本刊特约记者.在“卡拉比猜想”时空里神游——华人数学家丘成桐访谈录[J].百年潮,2007(3):22-27. 被引量:2
  • 3刘克峰,徐浩.丘成桐先生学术成就[M]//刘克峰,季理真.丘成桐的数学人生.杭州:浙江大学出版社,2006:163.
  • 4季理真,刘克峰.丘成桐一站在数学之巅的科学巨匠[M]∥刘克峰,季理真.丘成桐的数学人生.杭州:浙江大学出版社,2006.135~136.
  • 5Scientist at Work: Shing-Tung Yau The Emperor of Math [ N ]. NYT1MES,2006-10-22.
  • 6Eugenio Calabi [ DB/OL 1. [ 2010-10-12 ]. http ://www. worldlingo, com/ma/enwiki/en/Eugenio_Calabi/1.
  • 7Eugenio Calabi. [ DB/OL]. [ 2010-10-121 http ://genealogy. math. ndsu. nodak, edu/id, php? id = 8111.
  • 8Department Chairs. Department of Mathematics. University of Pennsylvania. [ DB/OL]. [ 2010-10-25]. http://www. math. upenn, edu/History/dept_chairs, html.
  • 9Bourguignon J P. Eugenio Calabi and Kahler metrics [ M]//Manifolds and Geometry, Proceedings of the Symposium on Mathematics. Cambridge: Cambridge Univ. Press, 1996. 61 85.
  • 10郑绍远.我的老朋友丘成桐[M]∥刘克峰,季理真.丘成桐的数学人生.杭州:浙江大学出版社,2006.封页.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部