摘要
根据视觉识别的差别特征分辨特性,定义了差别特征模式(DFP),对前向人工神经网络进行了改进,提出了基于差别特征模式的学习方法.针对视觉识别的大小不变性、位置无关性、轮廓与实心等价性以及变形有噪时的相对稳定性,设计了前向网络,通过调节注视中心来识别多个物体.实验结果证实,该神经网络对模式具有较好的识别稳定性.
Thisarticle discussed the vision and itsrecognition processand found outthathum an recognizes objects not by their isolated features,but by their m ain difference features w hich people get through contrasting them .According to the principle,the difference feature patterns(DFP) w ere defined,based on w hich a new learning m ethod w aspresented and BPneuralnetw orksim proved.Considering the featuresof vision recognition,such assize unchangeablefeature,aBPnetw ork w asdesigned which recognizesm ultiple objects by using focusofattention.The experim entprovesthe recognition stability ofthe netw ork.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
1999年第9期1146-1148,1156,共4页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金
关键词
差别特征模式
神经网络
模式识别
图像识别
difference feature pattern(DFP)
neuralnetw ork
vision
pattern recognition