期刊文献+

W-加密三角剖分下二元五次超样条函数空间的局部Lagrange插值 被引量:1

LOCAL LAGRANGE INTERPOLATION BY BIVARIATE C^2 QUINTIC SUPER SPLINES ON WANG'S TRIANGULATIONS
原文传递
导出
摘要 本文选取二元五次C^2超样条函数空间作为插值空间,考虑局部Lagrange插值.首先对三角剖分△进行着色,通过Wang-加密三角剖分对原剖分△细分大约-半的三角形.然后通过在内边增加一些另外的光滑条件,使得样条函数在某些边上达到更高阶的光滑.最后在△的加密三角剖分内选择Lagrange插值点.结果表明相应的插值基函数具有局部支集. Lag-range interpolation scheme is constructed based on bivariate C2 quintic super spline spaces on Wang's refined triangulation. Firstly, a suitable coloring of the triangles in the original triangulation is used and about half of the triangles are subdivided by a Wang's refined triangulation. Then, Lagrange interpolation points axe chosen in the refined trian- gulation by requiring certain additional smoothness conditions across inserted edges. The corresponding fundamental splines have local supports.
出处 《计算数学》 CSCD 北大核心 2011年第3期298-312,共15页 Mathematica Numerica Sinica
关键词 二元五次超样条 局部Lagrange插值 着色理论 Wang-加密三角剖分 bivariate quintic super splines local Lagrange interpolation coloring algorithm Wang's refined triangulations
  • 相关文献

参考文献20

  • 1Nurnberger G, Schumaker L L, Zeilfelder F. Local Lagrange interpolation by bivariate C1 cubic splines[A]. Mathematical Methods in CAGD[M]: Oslo 2000, Tom Lyche and Larry Schumaker (eds.), Vanderbilt University Press, 2001, 393-404.
  • 2Nurnberger G, Schumaker L L, Zeilfelder F. Lagrange interpolation by C1 cubic splines on tri- angulations of separable quadrangulations[A]. In Approximation Theory X: splines, wavelets and Applications[M], C.K. Chui and Larry L. Schumaker(eds), Vanderbilt University Press, Nashville, 2002, 405-424.
  • 3Nurnberger G, Schumaker L L, Zeilfelder F. Lagrange interpolation by C1 cubic splines on trian- gulated quadrangulations[J]. Advances in Computational Mathematics, 2004, 21: 357-380.
  • 4Niirnberger G, Zeilfelder F. Local Lagrange interpolation by cubic splines on a class of trian- gulations[A]. Trends in Approximation Theory[M], K.Kopotan, T.Lyche and M.Neamtu(eds), Nashville: Vanderbilt University Press, 2002, 341-350.
  • 5Nurnberger G, Zeilfelder F. Lagrange interpolation by bivariate C1 splines with optimal approxi- mation order[J]. Advances in Computational Mathematics, 2004, 21: 381-419.
  • 6Nurnberger G, Zeilfelder F.Local Lagrange interpolation on Powell-Sabin triangulations and ter- rain modelling[A]. In W. Haussmann et. al. Multivariate Approximation[M], Birkhauser, Basel, ISNM 137, 2001, 227-244.
  • 7Alfeld P. Bivariate spline spaces and minimal determining set[J]. Comput. Appl. Math., 2000, 199: 13-27.
  • 8Davydov O, Nfirnberger G, Zeilfelder F. Cubic spline interpolation on nested polygon triangula- tions[A]. In Curve and Surface fitting[M], A. Cohen, C. Rabut and L.L. Schumaker(eds), Vander- bilt University Press, Nashville, 2000, 161-170.
  • 9Nfirnberger G, Zeilfelder F. Developments in bivariate spline interpolation[J]. J. Comput. Appl. Math, 2000, 121: 125-152.
  • 10Davydov O, Niirnberger G. Interpolation by C1 splines of degree q _> 4 on triangulations[J]. J. Comput. Appl. Math, 2000, 126: 159-183.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部